Time filter

Source Type

Airoldi C.,University of Milan Bicocca | Mourtas S.,University of Patras | Cardona F.,University of Milan Bicocca | Cardona F.,University of Aveiro | And 8 more authors.
European Journal of Medicinal Chemistry

Nanoliposomes decorated on their surface with ligands for Aβ-peptides, the key morphological features of Alzheimer's disease (AD), have been synthesized and characterized for their ability to target Aβ-peptide aggregates. A tricyclic benzopyrane-glycofused structure has been exploited as Aβ-peptide ligand, which was linked to liposomes via a copper-free, chemoselective, biocompatible click chemistry reaction. The tricyclic-decorated liposomes presented a mean diameter in the nanomolar range (150-200 nm), a negative z-potential and a good stability, at least up to one month. Integrity studies performed in the presence of serum proteins indicated that these decorated nanoliposomes fulfill the requirements for in vivo applications. NMR experiments carried out with Aβ1-42 oligomers using both surface functionalized and plain (control) liposomes, revealed that the binding ability of the nanoliposomes was mediated by the presence of the tricyclic ligand on their surface. Finally ThT assay carried out with tricyclic-decorated liposomes showed significant decrease in thioflavine T fluorescence after 24 h, suggesting a significant inhibition/delay of Aβ1-42 aggregation. © 2014 Elsevier Masson SAS. All rights reserved. Source

Lazar A.N.,Laboratoire Of Neuropathologie Escourolle | Lazar A.N.,French Institute of Health and Medical Research | Mourtas S.,University of Patras | Youssef I.,French Institute of Health and Medical Research | And 7 more authors.
Nanomedicine: Nanotechnology, Biology, and Medicine

Accumulation of amyloid peptide (Aβ) in senile plaques is a hallmark lesion of Alzheimer disease (AD). The design of molecules able to target the amyloid pathology in tissue is receiving increasing attention, both for diagnostic and for therapeutic purposes. Curcumin is a fluorescent molecule with high affinity for the Aβ peptide but its low solubility limits its clinical use. Curcumin-conjugated nanoliposomes, with curcumin exposed at the surface, were designed. They appeared to be monodisperse and stable. They were non-toxic in vitro, down-regulated the secretion of amyloid peptide and partially prevented Aβ-induced toxicity. They strongly labeled Aβ deposits in post-mortem brain tissue of AD patients and APPxPS1 mice. Injection in the hippocampus and in the neocortex of these mice showed that curcumin-conjugated nanoliposomes were able to specifically stain the Aβ deposits in vivo. Curcumin-conjugated nanoliposomes could find application in the diagnosis and targeted drug delivery in AD. From the Clinical Editor: In this preclinical study, curcumin-conjugated nanoliposomes were investigated as possible diagnostics and targeted drug delivery system in Alzheimer's disease, demonstrating strong labeling of Aβ deposits both in human tissue and in mice, and in vitro downregulation of amyloid peptide secretion and prevention of Aβ-induced toxicity. © 2013 Elsevier Inc. Source

Discover hidden collaborations