Entity

Time filter

Source Type


Gkermpoura S.,University of Patras | Obiols-Rabasa M.,Lund University | Iatridi Z.,University of Patras | Tsitsilianis C.,University of Patras | Tsitsilianis C.,Institute of Chemical Engineering science ICEHT FORTH
ACS Applied Materials and Interfaces | Year: 2015

We report the rheological and structural properties of a suspension comprising poly(ethylene oxide)-polystyrene-poly(ethylene oxide) core-shell micellar nanoparticles dispersed in 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid. A liquid to soft solid transition was observed at a copolymer concentration of 10 wt % above which an elastic soft material was formed, which was composed of non-ordered jammed core-shell micellar nanoparticles. In the soft solid state, a significant reduction in the size of the nanoparticles, approaching hard sphere behavior, was observed by small-angle X-ray scattering which is attributed to compression of the soft poly(ethylene oxide) coronas. The nonvolatile ionic liquid-based glassy soft solid formed exhibited remarkable thermal stability with a melting temperature of 141 °C at 20 wt % copolymer, which renders it suitable for applications involving elevated temperatures and/or reduced pressure where water-based formulations are inappropriate. © 2015 American Chemical Society. Source


Pandis S.N.,University of Patras | Pandis S.N.,Carnegie Mellon University | Skyllakou K.,University of Patras | Florou K.,University of Patras | And 4 more authors.
Faraday Discussions | Year: 2016

Five case studies (Athens and Paris in Europe, Pittsburgh and Los Angeles in the United States, and Mexico City in Central America) are used to gain insights into the changing levels, sources, and role of atmospheric chemical processes in air quality in large urban areas as they develop technologically. Fine particulate matter is the focus of our analysis. In all cases reductions of emissions by industrial and transportation sources have resulted in significant improvements in air quality during the last few decades. However, these changes have resulted in the increasing importance of secondary particulate matter (PM) which dominates over primary in most cases. At the same time, long range transport of secondary PM from sources located hundreds of kilometres from the cities is becoming a bigger contributor to the urban PM levels in all seasons. "Non-traditional" sources including cooking, and residential and agricultural biomass burning contribute an increasing fraction of the now reduced fine PM levels. Atmospheric chemistry is found to change the chemical signatures of a number of these sources relatively fast both during the day and night, complicating the corresponding source apportionment. © 2016 The Royal Society of Chemistry. Source

Discover hidden collaborations