Baltimore, MD, United States
Baltimore, MD, United States

Time filter

Source Type

Perica K.,Institute of Cell Engineering | Schutz C.,Institute of Cell Engineering | Varela J.C.,Institute of Cell Engineering | Varela J.C.,Sidney Kimmel Comprehensive Cancer Center | And 9 more authors.
ACS Nano | Year: 2015

Adoptive immunotherapy (AIT) can mediate durable regression of cancer, but widespread adoption of AIT is limited by the cost and complexity of generating tumor-specific T cells. Here we develop an Enrichment + Expansion strategy using paramagnetic, nanoscale artificial antigen presenting cells (aAPC) to rapidly expand tumor-specific T cells from rare naïve precursors and predicted neo-epitope responses. Nano-aAPC are capable of enriching rare tumor-specific T cells in a magnetic column and subsequently activating them to induce proliferation. Enrichment + Expansion resulted in greater than 1000-fold expansion of both mouse and human tumor-specific T cells in 1 week, with nano-aAPC based enrichment conferring a proliferation advantage during both in vitro culture and after adoptive transfer in vivo. Robust T cell responses were seen not only for shared tumor antigens, but also for computationally predicted neo-epitopes. Streamlining the rapid generation of large numbers of tumor-specific T cells in a cost-effective fashion through Enrichment + Expansion can be a powerful tool for immunotherapy. © 2015 American Chemical Society.


Newman R.H.,North Carolina A&T State University | Rho H.-S.,Center for High Throughput Biology | Woodard C.,Center for High Throughput Biology | Neiswinger J.,Center for High Throughput Biology | And 24 more authors.
Molecular Systems Biology | Year: 2013

The landscape of human phosphorylation networks has not been systematically explored, representing vast, unchartered territories within cellular signaling networks. Although a large number of in vivo phosphorylated residues have been identified by mass spectrometry (MS)-based approaches, assigning the upstream kinases to these residues requires biochemical analysis of kinase-substrate relationships (KSRs). Here, we developed a new strategy, called CEASAR, based on functional protein microarrays and bioinformatics to experimentally identify substrates for 289 unique kinases, resulting in 3656 high-quality KSRs. We then generated consensus phosphorylation motifs for each of the kinases and integrated this information, along with information about in vivo phosphorylation sites determined by MS, to construct a high-resolution map of phosphorylation networks that connects 230 kinases to 2591 in vivo phosphorylation sites in 652 substrates. The value of this data set is demonstrated through the discovery of a new role for PKA downstream of Btk (Bruton's tyrosine kinase) during B-cell receptor signaling. Overall, these studies provide global insights into kinase-mediated signaling pathways and promise to advance our understanding of cellular signaling processes in humans. © 2013 EMBO and Macmillan Publishers Limited.


Perica K.,Institute of Cell Engineering | Tu A.,Institute of Cell Engineering | Richter A.,Miltenyi Biotec GmbH | Bieler J.G.,Institute of Cell Engineering | Schneck J.P.,Institute of Cell Engineering
ACS Nano | Year: 2014

Iron-dextran nanoparticles functionalized with T cell activating proteins have been used to study T cell receptor (TCR) signaling. However, nanoparticle triggering of membrane receptors is poorly understood and may be sensitive to physiologically regulated changes in TCR clustering that occur after T cell activation. Nano-aAPC bound 2-fold more TCR on activated T cells, which have clustered TCR, than on naive T cells, resulting in a lower threshold for activation. To enhance T cell activation, a magnetic field was used to drive aggregation of paramagnetic nano-aAPC, resulting in a doubling of TCR cluster size and increased T cell expansion in vitro and after adoptive transfer in vivo. T cells activated by nano-aAPC in a magnetic field inhibited growth of B16 melanoma, showing that this novel approach, using magnetic field-enhanced nano-aAPC stimulation, can generate large numbers of activated antigen-specific T cells and has clinically relevant applications for adoptive immunotherapy. © 2014 American Chemical Society.


Perica K.,Institute of Cell Engineering | Kosmides A.K.,Institute of Cell Engineering | Schneck J.P.,Institute of Cell Engineering
Biochimica et Biophysica Acta - Molecular Cell Research | Year: 2015

Artificial antigen presenting cells (aAPCs) are engineered platforms for T cell activation and expansion, synthesized by coupling T cell activating proteins to the surface of cell lines or biocompatible particles. They can serve both as model systems to study the basic aspects of T cell signaling and translationally as novel approaches for either active or adoptive immunotherapy. Historically, these reductionist systems have not been designed to mimic the temporally and spatially complex interactions observed during endogenous T cell-APC contact, which include receptor organization at both micro- and nanoscales and dynamic changes in cell and membrane morphologies. Here, we review how particle size and shape, as well as heterogenous distribution of T cell activating proteins on the particle surface, are critical aspects of aAPC design. In doing so, we demonstrate how insights derived from endogenous T cell activation can be applied to optimize aAPC, and in turn how aAPC platforms can be used to better understand endogenous T cell stimulation. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling. © 2014 Elsevier B.V.


Agus D.B.,University of Southern California | Alexander J.F.,Methodist Hospital Research Institute | Arap W.,University of Texas M. D. Anderson Cancer Center | Ashili S.,Arizona State University | And 99 more authors.
Scientific Reports | Year: 2013

To investigate the transition from non-cancerous to metastatic from a physical sciences perspective, the Physical Sciences-Oncology Centers (PS-OC) Network performed molecular and biophysical comparative studies of the non-tumorigenic MCF-10A and metastatic MDA-MB-231 breast epithelial cell lines, commonly used as models of cancer metastasis. Experiments were performed in 20 laboratories from 12 PS-OCs. Each laboratory was supplied with identical aliquots and common reagents and culture protocols. Analyses of these measurements revealed dramatic differences in their mechanics, migration, adhesion, oxygen response, and proteomic profiles. Model-based multi-omics approaches identified key differences between these cells' regulatory networks involved in morphology and survival. These results provide a multifaceted description of cellular parameters of two widely used cell lines and demonstrate the value of the PS-OC Network approach for integration of diverse experimental observations to elucidate the phenotypes associated with cancer metastasis.


PubMed | University of Tübingen, Chang Gung University, Johns Hopkins University, Institute of Cell Engineering and 2 more.
Type: | Journal: Scientific reports | Year: 2016

Cytomegalovirus (CMV) infection is one of the most common persistent viral infections in humans worldwide and is epidemiologically associated with many adverse health consequences during aging. Previous studies yielded conflicting results regarding whether large, CMV-specific T-cell expansions maintain their function during human aging. In the current study, we examined the in vitro CMV-pp65-reactive T-cell response by comprehensively studying five effector functions (i.e., interleukin-2, tumor necrosis factor-, interferon-, perforin, and CD107a expression) in 76 seropositive individuals aged 70 years or older. Two data-driven, polyfunctionality panels (IL-2-associated and cytotoxicity-associated) derived from effector function co-expression patterns were used to analyze the results. We found that, CMV-pp65-reactive CD8+and CD4+T cells contained similar polyfunctional subsets, and the level of polyfunctionality was related to the size of antigen-specific response. In both CD8+and CD4+cells, polyfunctional cells with high cytotoxic potential accounted for a larger proportion of the total response as the total response size increased. Notably, a higher serum CMV-IgG level was positively associated with a larger T-cell response size and a higher level of cytotoxic polyfunctionality. These findings indicate that CMV-pp65-specific CD4+and CD8+T cell undergo simultaneous cytotoxic polyfunctionality maturation during aging.

Loading Institute of Cell Engineering collaborators
Loading Institute of Cell Engineering collaborators