Entity

Time filter

Source Type

Ljubljana, Slovenia

Rammensee H.-G.,Institute of Cell Biology | Singh-Jasuja H.,immatics biotechnologies
Expert Review of Vaccines | Year: 2013

Every cancer is different and cancer cells differ from normal cells, in particular, through genetic alterations. HLA molecules on the cell surface enable T lymphocytes to recognize cellular alterations as antigens, including mutations, increase in gene product copy numbers or expression of genes usually not used in the adult organism. The search for cancer-associated antigens shared by many patients with a particular cancer has yielded a number of hits used in clinical vaccination trials with indication of survival benefit. Targeting cancer-specific antigens, which are exclusively expressed on cancer cells and not on normal cells, holds the promise for much better results and perhaps even a cure. Such antigens, however, may specifically appear in very few patients or may be mutated appearing just in one patient. Therefore, to target these in a molecularly defined way, the approach has to be individualized. © 2013 Informa UK Ltd. Source


Paksa A.,Institute of Cell Biology | Raz E.,Institute of Cell Biology
Current Opinion in Cell Biology | Year: 2015

In the course of embryonic development, the process of cell migration is critical for establishment of the embryonic body plan, for morphogenesis and for organ function. Investigating the molecular mechanisms underlying cell migration is thus crucial for understanding developmental processes and clinical conditions resulting from abnormal cell migration such as cancer metastasis. The long-range migration of primordial germ cells toward the region at which the gonad develops occurs in embryos of various species and thus constitutes a useful in vivo model for single-cell migration. Recent studies employing zebrafish embryos have greatly contributed to the understanding of the mechanisms facilitating the migration of these cells en route to their target. © 2015 . Source


Desoye G.,Institute of Cell Biology | Gauster M.,Medical University of Graz | Wadsack C.,Institute of Cell Biology
American Journal of Clinical Nutrition | Year: 2011

The placenta is positioned between the maternal and fetal circulation and hence plays a key role in transporting maternal nutrients to the developing fetus. Fetal growth changes in the 2 most frequent pregnancy pathologies, gestational diabetes mellitus and fetal growth restriction, are predominantly characterized by an exaggerated and restricted fat accretion, respectively. Glucose, by its regulating effect on fetal insulin concentrations, and lipids have been strongly implicated in fetal fat deposition. Transplacental glucose flux is highly efficient and limited only by nutrient availability (flow-limited)-ie, driven by the maternal-fetal glucose concentration gradient and blood flow, with little, if any, effect of placental morphology, glucose consumption, and transporter expression. This explains why, despite changes in these determinants in both pathologies, transplacental glucose flux is unaltered. © 2011 American Society for Nutrition. Source


Reichman-Fried M.,Institute of Cell Biology | Raz E.,Institute of Cell Biology
BioEssays | Year: 2014

The identification of molecules controlling embryonic patterning and their functional analysis has revolutionized the fields of Developmental and Cell Biology. The use of new sequence information and modern bioinformatics tools has enriched the list of proteins that could potentially play a role in regulating cell behavior and function during early development. The recent application of efficient methods for gene knockout in zebrafish has accelerated the functional analysis of many proteins, some of which have been overlooked due to their small size. Two recent publications report on the identification of one such protein and its role in zebrafish embryogenesis. The protein, currently designated Apela, was shown to act as a secreted protein whose absence adversely affected various early developmental processes. Additional signaling proteins that have been identified in one of the studies are likely to open the way to unraveling hitherto unknown developmental pathways and have the potential to provide a more comprehensive understanding of known developmental processes. © 2014 WILEY Periodicals, Inc. Source


Zupancic D.,Institute of Cell Biology | Romih R.,Institute of Cell Biology
Radiology and Oncology | Year: 2013

Background. Uroplakins are differentiation-related membrane proteins of urothelium. We compared uroplakin expression and ultrastructural localization in human normal urothelium, papilloma and papillary carcinoma. Because of high recurrence rate of these tumours, treated by transurethral resection, we investigated urothelial tumour, resection border and uninvolved urothelium. Patients and methods. Urinary bladder samples were obtained from tumour free control subjects and patients with papilloma and papillary carcinoma. Immunohistochemical and immunoelectron labelling of uroplakins were performed. Results. In normal human urothelium with continuous uroplakin-positive superficial cell layer uroplakins were localized to flattened mature fusiform vesicles and apical plasma membrane of umbrella cells. Diverse uroplakin expression was found in papilloma and papillary carcinoma. Three aberrant differentiation stages of urothelial cells, not found in normal urothelium, were recognized in tumours. Diverse uroplakin expression and aberrant differentiation were occasionally found in resection border and in uninvolved urothelium. Conclusions. We demonstrated here that uroplakin expression and localization in urothelial tumours is altered when compared to normal urothelium. In patients with papilloma and papillary carcinoma immunolabelling of uroplakins at ultrastructural level shows aberrant urothelial differentiation. It is possible that aberrant differentiation stages of urothelial cells in resection border and in uninvolved urothelium contribute to high recurrence rate. Source

Discover hidden collaborations