Time filter

Source Type

Guo Y.,Hebei Medical University | Guo Y.,Key Laboratory of Hebei Neurology | Guo Y.,Hebei Institute of Cardiocerebrovascular Disease | Zhang Y.,Roswell Park Cancer Institute | And 14 more authors.
Laboratory Investigation | Year: 2013

Oxidative stress is associated with the pathogenesis of amyotrophic lateral sclerosis (ALS). Nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway is one of the major cellular defense mechanisms against oxidative stress. However, the role of Nrf2-mediated neuroprotection (antioxidant defense) in the disease development of ALS remains unclear. To further investigate the role of Nrf2 in ALS, we genetically eliminate the Nrf2 gene from SOD1-G93A mice, a commonly used ALS mouse model, by generating a double mutant (Nrf2-/-SOD1-G93A mice). We found that it only had a modest impact on the course of disease by knocking out Nrf2 gene in these mice. Further studies demonstrated that, among previously known Nrf2-regulated phase II enzymes, only NAD(P)H: quinone oxidoreductase 1 induction was significantly affected by the elimination of Nrf2 gene in SOD1-G93A mice. Taken together, our data suggested that Nrf2 is not the sole mediator for the induction of antioxidant genes in SOD1-G93A mice, and Nrf2-mediated neuroprotection is not the key protective mechanism against neurodegeneration in those mice. © 2013 USCAP, Inc. All rights reserved.

Loading Hebei Institute of Cardiocerebrovascular Disease collaborators
Loading Hebei Institute of Cardiocerebrovascular Disease collaborators