Time filter

Source Type

Chen Z.,Nankai University | Dehmer M.,University of Federal Defense Munich | Emmert-Streib F.,Tampere University of Technology | Emmert-Streib F.,Institute of Biosciences and Medical Technology | Shi Y.,Nankai University
Entropy | Year: 2015

Shannon entropies for networks have been widely introduced. However, entropies for weighted graphs have been little investigated. Inspired by the work due to Eagle et al., we introduce the concept of graph entropy for special weighted graphs. Furthermore, we prove extremal properties by using elementary methods of classes of weighted graphs, and in particular, the one due to Bollobás and Erdös, which is also called the Randić weight. As a result, we derived statements on dendrimers that have been proven useful for applications. Finally, some open problems are presented. © 2015 by the authors. Source

Wolff J.,VU University Amsterdam | Wolff J.,University of Tampere | Narra N.,Tampere University of Technology | Narra N.,Institute of Biosciences and Medical Technology | And 6 more authors.
Materials and Design | Year: 2014

Dental implants induce diverse forces on their surrounding bone. However, when excessive unphysiological forces are applied, resorption of the neighbouring bone may occur. The aim of this study was to assess possible causes of bone loss around failing dental implants using finite element analysis. A further aim was to assess the implications of progressive bone loss on the strains induced by dental implants. Between 2003 and 2009 a total of 3700 implant operations were performed in a private clinic. Ten patients with 16 fixtures developed severe marginal bone defects. Finite element analysis was used to assess the effective strains produced at the bone-implant interface under unidirectional axial loading. These simulations were carried out on 4 specific implant types - Camlog Plus, Astra Osseo Speed, Straumann BL and Straumann S/SP. All implant types exhibited degraded performance under circular and horizontal bone loss conditions. This is evidenced by increased distribution of pathological strain intensities (>3000. με), in accordance with the mechanostat hypothesis, in the surrounding bone. Among the implants, the Camlog design seemed to have performed poorly, especially at the chamfer in the implant collar (>25000. με). Implants are designed to perform under nearly ideal conditions from insertion till osseointegration. However, when the surrounding bone undergoes remodelling, implant geometries can have varied performance, which in some cases can exacerbate bone loss. The results of this study indicate the importance of evaluating implant geometries under clinically observed conditions of progressive bone loss. © 2014 Elsevier Ltd. Source

Comert A.,Tampere University of Technology | Comert A.,Institute of Biosciences and Medical Technology | Honkala M.,Tampere University of Technology | Hyttinen J.,Tampere University of Technology | Hyttinen J.,Institute of Biosciences and Medical Technology
BioMedical Engineering Online | Year: 2013

Background: With the aging population and rising healthcare costs, wearable monitoring is gaining importance. The motion artifact affecting dry electrodes is one of the main challenges preventing the widespread use of wearable monitoring systems. In this paper we investigate the motion artifact and ways of making a textile electrode more resilient against motion artifact. Our aim is to study the effects of the pressure exerted onto the electrode, and the effects of inserting padding between the applied pressure and the electrode.Method: We measure real time electrode-skin interface impedance, ECG from two channels, the motion artifact related surface potential, and exerted pressure during controlled motion by a measurement setup designed to estimate the relation of motion artifact to the signals. We use different foam padding materials with various mechanical properties and apply electrode pressures between 5 and 25 mmHg to understand their effect. A QRS and noise detection algorithm based on a modified Pan-Tompkins QRS detection algorithm estimates the electrode behaviour in respect to the motion artifact from two channels; one dominated by the motion artifact and one containing both the motion artifact and the ECG. This procedure enables us to quantify a given setup's susceptibility to the motion artifact.Results: Pressure is found to strongly affect signal quality as is the use of padding. In general, the paddings reduce the motion artifact. However the shape and frequency components of the motion artifact vary for different paddings, and their material and physical properties. Electrode impedance at 100 kHz correlates in some cases with the motion artifact but it is not a good predictor of the motion artifact.Conclusion: From the results of this study, guidelines for improving electrode design regarding padding and pressure can be formulated as paddings are a necessary part of the system for reducing the motion artifact, and further, their effect maximises between 15 mmHg and 20 mmHg of exerted pressure. In addition, we present new methods for evaluating electrode sensitivity to motion, utilizing the detection of noise peaks that fall into the same frequency band as R-peaks. © 2013 Cömert et al.; licensee BioMed Central Ltd. Source

Lu N.,CAS Shanghai Institute of Microsystem and Information Technology | Dai P.,CAS Shanghai Institute of Microsystem and Information Technology | Gao A.,CAS Shanghai Institute of Microsystem and Information Technology | Valiaho J.,Tampere University of Technology | And 5 more authors.
ACS Applied Materials and Interfaces | Year: 2014

Now a human thyroid stimulating hormone (hTSH) assay has been considered as a screening tool for thyroid disease. However, some existing methods employed for in-hospital diagnosis still suffer from labor-intensive experimental steps, and expensive instrumentation. It is of great significance to meet the ever growing demand for development of label-free, disposable, and low-cost productive hTSH detection biosensors. Herein, we demonstrate a novel sensing strategy for highly sensitive and selective immunodetection of hTSH by using a CMOS-compatible silicon nanowire field effect transistor (SiNW-FET) device. The SiNW chips were manufactured by a top-down approach, allowing for the possibility of low-cost and large-scale production. By using the antibody-functionalized SiNW-FET nanosensors, we performed the label-free and rapid electrical detection of hTSH without any nanoparticle conjugation or signal amplifications. The proposed SiNW biosensor could detect hTSH binding down to a concentration of at least 0.02 mIU/L (0.11 pM), which is more sensitive than other sensing techniques. We also investigated the influence of Debye screening with varied ionic strength on hTSH detection sensitivity, and real-time measurements on various concentrations of the diluted buffer. The simple, label-free, low-cost, and miniaturized SiNW-FET chip has a potential perspective in point-of-care diagnosis of thyroid disease. (Graph Presented). © 2014 American Chemical Society. Source

Laiho J.E.,University of Tampere | Oikarinen S.,University of Tampere | Oikarinen M.,University of Tampere | Larsson P.G.,Karolinska Institutet | And 7 more authors.
Journal of Clinical Virology | Year: 2015

Background: Enteroviral infections are common, affecting humans across all age groups. RT-PCR is widely used to detect these viruses in clinical samples. However, there is a need for sensitive and specific in situ detection methods for formalin-fixed tissues, allowing for the anatomical localization of the virus and identification of its serotype. Objectives: The aim was to design novel enterovirus probes, assess the impact of probe design for the detection and optimize the new single molecule in situ hybridization technology for the detection of enteroviruses in formalin-fixed paraffin-embedded samples. Study design: Four enterovirus RNA-targeted oligonucleotide RNA probes - two probes for wide range enterovirus detection and two for serotype-targeted detection of Coxsackievirus B1 (CVB1) - were designed and validated for the commercially available QuantiGene ViewRNA in situ hybridization method. The probe specificities were tested using a panel of cell lines infected with different enterovirus serotypes and CVB infected mouse pancreata. Results: The two widely reactive probe sets recognized 19 and 20 of the 20 enterovirus serotypes tested, as well as 27 and 31 of the 31 CVB1 strains tested. The two CVB1 specific probe sets detected 30 and 14 of the 31 CVB1 strains, with only minor cross-reactivity to other serotypes. Similar results were observed in stained tissues from CVB -infected mice. Conclusions: These novel in-house designed probe sets enable the detection of enteroviruses from formalin-fixed tissue samples. Optimization of probe sequences makes it possible to tailor the assay for the detection of enteroviruses on the serotype or species level. © 2015 Elsevier B.V. Source

Discover hidden collaborations