Time filter

Source Type

Mohanty P.,National Research Center for Orchids | Das J.,Institute of Bioresources and Sustainable Development IBSD
Plant Growth Regulation | Year: 2013

Artificial seeds were obtained through encapsulation of protocorm-like bodies (PLBs) of Dendrobium densiflorum in calcium alginate beads. This paper demonstrates the alginate-encapsulation and conversion (complete plantlet regeneration) from PLBs, the effect of storage conditions (at different temperature; 4, 8, 16 °C, RT and duration; 15, 30, 45, 60, 75, 90 days) on viability of encapsulated plant materials as well as the assessment of genetic fidelity of the regenerants. Individual PLBs were encapsulated in calcium alginate beads for mass propagation, short-term storage and germplasm sharing. The superior gel matrix for encapsulation was obtained using 3 % sodium alginate and 100 mM calcium chloride (CaCl2·2H2O). The highest percentage of conversion (100 %) of encapsulated PLBs (capsules) was obtained on MS2 medium (MS medium + 2 mg/l BAP). Capsules were successfully stored till 60 days at 8 °C with conversion frequency of 95.5 %. Plantlets regenerated from encapsulated beads were acclimatized successfully with 95 % survival rate. A total of 40 primers were screened, out of which 10 primers successfully generated 39 scorable bands, ranging from 0.2 to 1.3 kb amplicons. The uniform RAPD banding profile among the plantlets derived from encapsulated PLBs following 60 days of storage confirmed genetic fidelity. © 2013 Springer Science+Business Media Dordrecht. Source

Aggarwal B.B.,University of Houston | Deb L.,University of Houston | Deb L.,Institute of Bioresources and Sustainable Development IBSD | Prasad S.,University of Houston
Molecules | Year: 2015

Curcumin (diferuloylmethane), a golden pigment from turmeric, has been linked with antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and antidiabetic properties. Most of the these activities have been assigned to methoxy, hydroxyl, α,β-unsaturated carbonyl moiety or to diketone groups present in curcumin. One of the major metabolites of curcumin is tetrahydrocurcumin (THC), which lacks α,β-unsaturated carbonyl moiety and is white in color. Whether THC is superior to curcumin on a molecular level is unclear and thus is the focus of this review. Various studies suggest that curcumin is a more potent antioxidant than THC; curcumin (but not THC) can bind and inhibit numerous targets including DNA (cytosine-5)-methyltransferase-1, heme oxygenase-1, Nrf2, β-catenin, cyclooxygenase-2, NF-kappaB, inducible nitric oxide synthase, nitric oxide, amyloid plaques, reactive oxygen species, vascular endothelial growth factor, cyclin D1, glutathione, P300/CBP, 5-lipoxygenase, cytosolic phospholipase A2, prostaglandin E2, inhibitor of NF-kappaB kinase-1, -2, P38MAPK, p-Tau, tumor necrosis factor-α, forkhead box O3a, CRAC; curcumin can inhibit tumor cell growth and suppress cellular entry of viruses such as influenza A virus and hepatitis C virus much more effectively than THC; curcumin affects membrane mobility; and curcumin is also more effective than THC in suppressing phorbol-ester-induced tumor promotion. Other studies, however, suggest that THC is superior to curcumin for induction of GSH peroxidase, glutathione-S-transferase, NADPH: quinone reductase, and quenching of free radicals. Most studies have indicated that THC exhibits higher antioxidant activity, but curcumin exhibits both pro-oxidant and antioxidant properties. Source

Suthar S.K.,Jaypee University of Information Technology | Sharma N.,BAHRA University | Lee H.B.,Cancer Research Initiative Foundation | Nongalleima K.,Institute of Bioresources and Sustainable Development IBSD | Sharma M.,Jaypee University of Information Technology
Current Topics in Medicinal Chemistry | Year: 2014

The activation of transcription factors nuclear factor-kappa B (NF-κB) and cyclooxygenase-2 (COX-2) is critical in cancer; they act synergistically in promoting tumor growth, survival, and resistance to chemotherapy. Thus, combined targeting of NF-κB and COX-2 present an opportunity for synergistic anticancer efficacy. The ester prodrugs of pentacyclic triterpenoids reduced lantadene A (3), B (4), and its congener 22β-hydroxyoleanonic acid (5) with various non steroidal anti-inflammatory drugs (NSAIDs) present a novel approach. The ester prodrugs of 3 and 4 with diclofenac showed promising dual inhibition of NF-κB and COX-2. The lead prodrugs 14 and 15 exhibited inhibition of inhibitor of nuclear factor-kappa B kinaseβ (IKKβ) in the single-digit micromolar range and at the same time, prodrugs 14 and 15 showed marked cytotoxicity against A549 lung cancer cell line with IC50s 0.15 and 0.42 μM, respectively. The prodrugs 14 and 15 exhibited stability in the acidic pH and were hydrolyzed readily in the human blood plasma to release the active parent moieties. Thus, we have synthesized novel hybrid compounds to target both NF-κB and COX-2 via a prodrug approach, leading to promising anticancer candidates. © 2014 Bentham Science Publishers. Source

Louis B.,Institute of Bioresources and Sustainable Development IBSD | Louis B.,University of Burdwan | Louis B.,University of Yaounde I | Waikhom S.D.,Institute of Bioresources and Sustainable Development IBSD | And 7 more authors.
BMC Genomics | Year: 2014

Background: Plant and animal pathogenic fungus Cochliobolus lunatus cause great economic damages worldwide every year. C. lunatus displays an increased temperature dependent-virulence to a wide range of hosts. Nonetheless, this phenomenon is poorly understood due to lack of insights on the coordinated secretome weaponries produced by C. lunatus under heat-stress conditions on putative hosts. To understand the mechanism better, we dissected the secretome of C. lunatus interacting with potato (Solanum tuberosum L.) leaf at different temperature regimes.Results: C. lunatus produced melanized colonizing hyphae in and on potato leaf, finely modulated the ambient pH as a function of temperature and secreted diverse set of proteins. Using two dimensional gel electrophoresis (2-D) and mass spectrometry (MS) technology, we observed discrete secretomes at 20°C, 28°C and 38°C. A total of 21 differentially expressed peptide spots and 10 unique peptide spots (that did not align on the gels) matched with 28 unique protein models predicted from C. lunatus m118 v.2 genome peptides. Furthermore, C. lunatus secreted peptides via classical and non-classical pathways related to virulence, proteolysis, nucleic acid metabolism, carbohydrate metabolism, heat stress, signal trafficking and some with unidentified catalytic domains.Conclusions: We have identified a set of 5 soluble candidate effectors of unknown function from C. lunatus secretome weaponries against potato crop at different temperature regimes. Our findings demonstrate that C. lunatus has a repertoire of signature secretome which mediates thermo-pathogenicity and share a leucine rich " CL[xxxx]LHM" -motif. Considering the rapidly evolving temperature dependent-virulence and host diversity of C. lunatus, this data will be useful for designing new protection strategies. © 2014 Louis et al.; licensee BioMed Central Ltd. Source

Jeyaram K.,Institute of Bioresources and Sustainable Development IBSD | Romi W.,Institute of Bioresources and Sustainable Development IBSD | Singh T.A.,Institute of Bioresources and Sustainable Development IBSD | Devi A.R.,Institute of Bioresources and Sustainable Development IBSD | Devi S.S.,Manipur University
International Journal of Food Microbiology | Year: 2010

Soidon is a non-salted acidic fermented food prepared from the succulent bamboo shoot tip of Schizostachyum capitatum Munro by using a traditional liquid starter called "soidon mahi" in Manipur state of India. In this study, 163 bacterial isolates associated with this starter samples were identified and their population distribution was investigated by amplified ribosomal DNA restriction analysis (ARDRA), 16S rDNA sequencing and randomly amplified polymorphic DNA (RAPD) analysis. This acidic starter (pH 4.5±0.15) was dominated by a characteristic association of Bacillus and lactic acid bacteria (LAB) together. The population distribution of dominant species were Bacillus subtilis 29.3%, Bacillus cereus 35.7%, Bacillus pumilus 2.6%, Lactobacillus brevis 9.6%, Lactobacillus plantarum 5.1%, Carnobacterium sp. 11.9%, Enterococcus faecium 1.2% and Pseudomonas fluorescens 4.6%. Alarming population load (106-107cfu/ml) of B. cereus in 87% of starter samples studied should raise concern regarding biosafety of soidon consumption. PCR amplification of 16S-23S rDNA intergenic transcribed spacer (ITS) region and ITS-RFLP profiles revealed a high diversity with eight subgroups in B. subtilis, five subgroups in B. cereus and three subgroups in L. brevis isolates. The most abundant B. subtilis subgroup IB.1 distributed in most of the samples showed very less clonal variability during RAPD analysis. The molecular methods used in this study identified the dominant strains of Bacillus and LAB distributed in most of the starter samples. These dominant strains of B. subtilis, L. brevis and L. plantarum would allow for developing a defined starter culture for the production of quality soidon. © 2010 Elsevier B.V. Source

Discover hidden collaborations