Time filter

Source Type

Yuvs G.G.,Laboratory of Spectroscopic Research Spektrum Ltd. | Ignatova T.N.,Laboratory of Spectroscopic Research Spektrum Ltd. | Anuchin A.M.,Laboratory of Spectroscopic Research Spektrum Ltd. | Lebedeva V.L.,Lyubertsy District Hospital 2 | And 2 more authors.
Voprosy Pitaniia | Year: 2015

Elemental status of a person determines the qualitative and quantitative content of chemical elements in the human body. This marker allows us to estimate the level of imbalance of chemical elements and therefore health risks. The method for simultaneous quantitative and qualitative analysis of 67 elements in biomaterials has been proposed. The detailed elemental analysis of whole blood samples of 1711 healthy people (age range 0-100 years) of Moscow Region has been performed. A number of patterns of age-related changes of the element status conditionally healthy people has been estimated. Na content in the samples increased with the age of the person. Presumably, this result reflects the studied populations nutrition disorders associated with immoderate consumption of table salt. The maximum content of Ca was observed in blood samples of people age range 0-20 years (66-69 mg/kg), the Ca content in the blood samples of people age range 26-85 years was significantly lower (59-62 mg/kg). The maximum decrease of Ca was detected in blood samples of people age range of 85-100 years (57-59 mg/kg). This reduction in the concentration of Ca, apparently due to age-related changes of Ca balance, correlates with decrease of bone mineral density and bone mass. Iron content decreased in the blood samples of people age range 10-100 years from 480 to 390 mg/kg. Selenium content in blood of people age range 0-25 years linearly increased, remained stable high in the blood of people age range 25-55 years (0, 13-0, 136 mg/kg) and then gradually decreased. A graph of As content dependence from a person's age is a mirror image of the graph of Se content dependence from a person's age, which is evidence of the antagonistic effects of these elements. Graphic changes in the content of rare earth elements Eu and Ho reflect the unidirectional trend of these elements accumulation. The maximum content of these elements was observed in blood samples of people age range of 25-65 years. Perhaps a reduction of Eu and Ho in the age range 65-100 years age reflects a downward trend in bone mineral density and decrease in bone mass, which correlates with the Ca content in the blood depending on the age of people. The data obtained showed a significant increase of U and V in the blood of people age range of 85-100 years. The compounds of vanadium and uranium normally relatively easily filtered by the kidneys and excreted in the urine. This result seems to demonstrate age-related deterioration in the functioning of the excretory system. A list of recommendations f or nutrition correction of elemental imbalance of the observed population has been proposed.


Pitsiladis Y.P.,University of Brighton | Tanaka M.,Tokyo Metropolitan University | Tanaka M.,Tokyo Metropolitan Geriatric Hospital | Eynon N.,Victoria University of Melbourne | And 142 more authors.
Physiological Genomics | Year: 2016

Despite numerous attempts to discover genetic variants associated with elite athletic performance, injury predisposition, and elite/world-class athletic status, there has been limited progress to date. Past reliance on candidate gene studies predominantly focusing on genotyping a limited number of single nucleotide polymorphisms or the insertion/deletion variants in small, often heterogeneous cohorts (i.e., made up of athletes of quite different sport specialties) have not generated the kind of results that could offer solid opportunities to bridge the gap between basic research in exercise sciences and deliverables in biomedicine. A retrospective view of genetic association studies with complex disease traits indicates that transition to hypothesis-free genome-wide approaches will be more fruitful. In studies of complex disease, it is well recognized that the magnitude of genetic association is often smaller than initially anticipated, and, as such, large sample sizes are required to identify the gene effects robustly. A symposium was held in Athens and on the Greek island of Santorini from 14 -17 May 2015 to review the main findings in exercise genetics and genomics and to explore promising trends and possibilities. The symposium also offered a forum for the development of a position stand (the Santorini Declaration). Among the participants, many were involved in ongoing collaborative studies (e.g., ELITE, GAMES, Gene SMART, GENESIS, and POWERGENE). A consensus emerged among participants that it would be advantageous to bring together all current studies and those recently launched into one new large collaborative initiative, which was subsequently named the Athlome Project Consortium. © 2016 the American Physiological Society.


Strushkevich N.,University of Toronto | Usanov S.A.,Institute of Bioorganic Chemistry NASB | Park H.-W.,University of Toronto | Park H.-W.,King's College
Journal of Molecular Biology | Year: 2010

The obligatory step in sterol biosynthesis in eukaryotes is demethylation of sterol precursors at the C14-position, which is catalyzed by CYP51 (sterol 14-alpha demethylase) in three sequential reactions. In mammals, the final product of the pathway is cholesterol, while important intermediates, meiosis-activating sterols, are produced by CYP51. Three crystal structures of human CYP51, ligand-free and complexed with antifungal drugs ketoconazole and econazole, were determined, allowing analysis of the molecular basis for functional conservation within the CYP51 family. Azole binding occurs mostly through hydrophobic interactions with conservative residues of the active site. The substantial conformational changes in the B′ helix and F-G loop regions are induced upon ligand binding, consistent with the membrane nature of the protein and its substrate. The access channel is typical for mammalian sterol-metabolizing P450 enzymes, but is different from that observed in Mycobacterium tuberculosis CYP51. Comparison of the azole-bound structures provides insight into the relative binding affinities of human and bacterial P450 enzymes to ketoconazole and fluconazole, which can be useful for the rational design of antifungal compounds and specific modulators of human CYP51. © 2010 Elsevier Ltd.


Gilep A.A.,Institute of Bioorganic Chemistry NASB | Sushko T.A.,Institute of Bioorganic Chemistry NASB | Usanov S.A.,Institute of Bioorganic Chemistry NASB
Biochimica et Biophysica Acta - Proteins and Proteomics | Year: 2011

Cytochrome P450s play critical roles in the metabolism of various bioactive compounds. One of the crucial functions of cytochrome P450s in Chordata is in the biosynthesis of steroid hormones. Steroid 17alpha-hydroxylase/17,20-lyase (CYP17) is localized in endoplasmic reticulum membranes of steroidogenic cells. CYP17 catalyzes the 17alpha-hydroxylation reaction of delta4-C21 steroids (progesterone derivatives) and delta5-C21 steroids (pregnenolone derivatives) as well as the 17,20-lyase reaction producing C 19-steroids, a key branch point in steroid hormone biosynthesis. Depending on CYP17 activity, the steroid hormone biosynthesis pathway is directed to either the formation of mineralocorticoids and glucocorticoids or sex hormones. In the present review, the current information on CYP17 is analyzed and discussed. © 2010 Elsevier B.V. All rights reserved.


Misharin A.Yu.,RAS V.N. Orekhovich Institute of Biomedical Chemistry | Mehtiev A.R.,RAS V.N. Orekhovich Institute of Biomedical Chemistry | Zhabinskii V.N.,Institute of Bioorganic Chemistry NASB | Khripach V.A.,Institute of Bioorganic Chemistry NASB | And 2 more authors.
Steroids | Year: 2010

Toxicity of eight 22,23-dihydroxystigmastane derivatives (four pairs of (22R,23R)- and (22S,23S)-isomers differing in steroid backbone structure) to human breast carcinoma MCF-7 cells was compared. For every pair of structurally related compounds, (22R,23R) isomer was found to be significantly more toxic than (22S,23S) isomer. Computational analysis showed that side chain of (22R,23R)-22,23-dihydroxystigmastane derivatives is rigid, whereas that of (22S,23S)-isomers is rather flexible. Structure of steroid backbone significantly affects cytotoxicity of (22R,23R)-22,23-dihydroxystigmastane derivatives to human breast carcinoma MCF-7 cells, human ovary carcinoma CaOv cells, and human prostate carcinoma LnCaP cells. (22R,23R)-3β,22,23-trihydroxystigmast-5-ene and (22R,23R)-3β,22,23-trihydroxystigmast-5-en-7-one, both comprising equatorial 3β-hydroxyl group, exhibited the highest cytotoxicity, while the most polar 28-homobrassinolide and 28-homocastasterone, both comprising 2α,3α-dihydroxy groups, exhibited the lowest toxicity. Binding of (22R,23R)-22,23-dihydroxystigmastane derivatives to plasmatic membrane was suggested to be important for cytotoxicity. © 2010 Elsevier Inc. All rights reserved.


Sushko T.A.,Institute of Bioorganic Chemistry NASB | Gilep A.A.,Institute of Bioorganic Chemistry NASB | Usanov S.A.,Institute of Bioorganic Chemistry NASB
Anti-Cancer Agents in Medicinal Chemistry | Year: 2014

Most prostate and breast cancers are hormone dependent. The inhibition of steroid 17α-hydroxylase/17,20- lyase (CYP17), which is a crucial enzyme for steroid hormone biosynthesis, is widely used to treat androgen-dependent prostate cancer (PC). CYP17 has dual enzymatic activity: 17alpha-hydroxylase activity (utilizing delta4- C21 steroids as substrates) and the 17,20-lyase activity (using delta5- C21 steroids as substrates). The steroid biosynthetic pathway is directed to either the production of corticosteroids or sex hormones depending on the activity of CYP17. In this review, the current information on the genetics, molecular structure, substrate specificity and inhibitors of CYP17 is analyzed and discussed. © 2014 Bentham Science Publishers.


PubMed | Institute of Bioorganic Chemistry NASB
Type: Journal Article | Journal: Biochimica et biophysica acta | Year: 2010

Cytochrome P450s play critical roles in the metabolism of various bioactive compounds. One of the crucial functions of cytochrome P450s in Chordata is in the biosynthesis of steroid hormones. Steroid 17alpha-hydroxylase/17,20-lyase (CYP17) is localized in endoplasmic reticulum membranes of steroidogenic cells. CYP17 catalyzes the 17alpha-hydroxylation reaction of delta4-C steroids (progesterone derivatives) and delta5-C steroids (pregnenolone derivatives) as well as the 17,20-lyase reaction producing C-steroids, a key branch point in steroid hormone biosynthesis. Depending on CYP17 activity, the steroid hormone biosynthesis pathway is directed to either the formation of mineralocorticoids and glucocorticoids or sex hormones. In the present review, the current information on CYP17 is analyzed and discussed.

Loading Institute of Bioorganic Chemistry NASB collaborators
Loading Institute of Bioorganic Chemistry NASB collaborators