Time filter

Source Type

Zubiolo A.,University of Nice Sophia Antipolis | Harb K.,Institute of Biology Valrose | Studer M.,Institute of Biology Valrose | Debreuve E.,University of Nice Sophia Antipolis | Descombes X.,University of Nice Sophia Antipolis
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS | Year: 2015

In this paper, we propose a framework to analyze the morphology of mouse neurons in the layer V of the cortex from 3D microscopic images. We are given 8 sets of images, each of which is composed of a 10x image showing the whole neurons, and a few (2 to 5) 40x images focusing on the somas. The framework consists in segmenting the neurons on both types of images to compute a set of specific morphological features, and in matching the neurons in the 40x images to their counterparts in the 10x images to combine the features we obtained, in a fully automatic fashion. © 2015 IEEE.

Alfano C.,Institute of Biology Valrose | Alfano C.,University of Nice Sophia Antipolis | Magrinelli E.,Institute of Biology Valrose | Magrinelli E.,University of Nice Sophia Antipolis | And 4 more authors.
Cellular and Molecular Life Sciences | Year: 2014

Chicken ovalbumin upstream promoter transcription factors (COUP-TFs) are nuclear receptors belonging to the superfamily of the steroid/thyroid hormone receptors. Members of this family are internalized to the nucleus both in a ligand-dependent or -independent manner and act as strong transcriptional regulators by binding to the DNA of their target genes. COUP-TFs are defined as orphan receptors, since ligands regulating their activity have not so far been identified. From the very beginning of metazoan evolution, these molecules have been involved in various key events during embryonic development and organogenesis. In this review, we will mainly focus on their function during development and maturation of the central nervous system, which has been well characterized in various animal classes ranging from ctenophores to mammals. We will start by introducing the current knowledge on COUP-TF mechanisms of action and then focus our discussion on the crucial processes underlying forebrain ontogenesis, with special emphasis on mammalian development. Finally, the conserved roles of COUP-TFs along phylogenesis will be highlighted, and some hypotheses, worth exploring in future years to gain more insight into the mechanisms controlled by these factors, will be proposed. © 2013 Springer Basel.

Andersen D.S.,University of Nice Sophia Antipolis | Andersen D.S.,French National Center for Scientific Research | Andersen D.S.,French Institute of Health and Medical Research | Andersen D.S.,Institute of Biology Valrose | And 25 more authors.
Nature | Year: 2015

Disruption of epithelial polarity is a key event in the acquisition of neoplastic growth. JNK signalling is known to play an important part in driving the malignant progression of many epithelial tumours, although the link between loss of polarity and JNK signalling remains elusive. In a Drosophila genome-wide genetic screen designed to identify molecules implicated in neoplastic growth, we identified grindelwald (grnd), a gene encoding a transmembrane protein with homology to members of the tumour necrosis factor receptor (TNFR) superfamily. Here we show that Grnd mediates the pro-apoptotic functions of Eiger (Egr), the unique Drosophila TNF, and that overexpression of an active form of Grnd lacking the extracellular domain is sufficient to activate JNK signalling in vivo. Grnd also promotes the invasiveness of Ras V12 /scrib/' tumours through Egr-dependent Matrix metalloprotease-1 (Mmp1) expression. Grnd localizes to the subapical membrane domain with the cell polarity determinant Crumbs (Crb) and couples Crb-induced loss of polarity with JNK activation and neoplastic growth through physical interaction with Veli (also known as Lin-7). Therefore, Grnd represents the first example of a TNFR that integrates signals from both Egr and apical polarity determinants to induce JNK-dependent cell death or tumour growth. © 2015 Macmillan Publishers Limited. All rights reserved.

Discover hidden collaborations