Institute Of Biologie Integrative Et Des Systemes Ibis

Québec, Canada

Institute Of Biologie Integrative Et Des Systemes Ibis

Québec, Canada
SEARCH FILTERS
Time filter
Source Type

Haas B.,Laval University | Bonifait L.,Laval University | Vaillancourt K.,Laval University | Charette S.J.,Institute Of Biologie Integrative Et Des Systemes Ibis | And 3 more authors.
BMC Research Notes | Year: 2014

Background: The Gram-positive bacterium Streptococcus suis serotype 2 is an important swine pathogen and emerging zoonotic agent. Multilocus sequence typing allowed dividing S. suis serotype 2 into sequence types (STs). The three major STs of S. suis serotype 2 from North America are 1 (most virulent), 25 (intermediate virulence) and 28 (less virulent). Although the presence of DNase activity in S. suis has been previously reported, little data is available. The aim of this study was to investigate DNase activity in S. suis according to STs, to characterize the activity and gene, and to provide evidence for a potential role in virulence. Results: We showed that ST1 and ST28 strains exhibited DNase activity that was absent in ST25 strains. The lack of activity in ST25 isolates was associated with a 14-bp deletion resulting in a shifted reading frame and a premature stop codon. The DNase of S. suis P1/7 (ST1) was cell-associated and active on linear DNA. A DNase-deficient mutant of S. suis P1/7 was found to be less virulent in an amoeba model. Stimulation of macrophages with the DNase mutant showed a decreased secretion of pro-inflammatory cytokines and matrix metalloproteinase-9 compared to the parental strain. Conclusions: This study further expands our knowledge of S. suis DNase and its potential role in virulence. © 2014 Haas et al.; licensee BioMed Central Ltd.


Bonifait L.,Laval University | Charette S.J.,Institute Of Biologie Integrative Et Des Systemes Ibis | Charette S.J.,Laval University | Filion G.,Institute Of Biologie Integrative Et Des Systemes Ibis | And 3 more authors.
Applied and Environmental Microbiology | Year: 2011

The Gram-positive bacterium Streptococcus suis is a major swine pathogen worldwide that causes meningitis, septicemia, and endocarditis. In this study, we demonstrate that the amoeba Dictyostelium discoideum can be a relevant alternative system to study the virulence of S. suis. © 2011, American Society for Microbiology.


Jacobsen M.W.,University of Aarhus | Pujolar J.M.,University of Aarhus | Gilbert M.T.P.,Copenhagen University | Moreno-Mayar J.V.,Copenhagen University | And 5 more authors.
Heredity | Year: 2014

Processes leading to speciation in oceanic environments without obvious physical barriers remain poorly known. European and American eel (Anguilla anguilla and A. rostrata) spawn in partial sympatry in the Sargasso Sea. Larvae are advected by the Gulf Stream and other currents towards the European/North African and North American coasts, respectively. We analyzed 104 mitogenomes from the two species along with mitogenomes of other Anguilla and outgroup species. We estimated divergence time between the two species to identify major events involved in speciation. We also considered two previously stated hypotheses: one where the ancestral species was present in only one continent but was advected across the Atlantic by ocean current changes and another where population declines during Pleistocene glaciations led to increasing vicariance, facilitating speciation. Divergence time was estimated to ∼3.38 Mya, coinciding with the closure of the Panama Gateway that led to reinforcement of the Gulf Stream. This could have advected larvae towards European/North African coasts, in which case American eel would be expected to be the ancestral species. This scenario could, however, not be unequivocally confirmed by analyses of dN/dS, nucleotide diversity and effective population size estimates. Extended bayesian skyline plots showed fluctuations of effective population sizes and declines during glaciations, and thus also lending support to the importance of vicariance during speciation. There was evidence for positive selection at the ATP6 and possibly ND5 genes, indicating a role in speciation. The findings suggest an important role of ocean current changes in speciation of marine organisms.Heredity advance online publication, 28 May 2014; doi:10.1038/hdy.2014.44.


Jacobsen M.W.,University of Aarhus | Pujolar J.M.,University of Aarhus | Bernatchez L.,Institute Of Biologie Integrative Et Des Systemes Ibis | Munch K.,University of Aarhus | And 3 more authors.
Molecular Ecology | Year: 2014

The importance of speciation-with-geneflow scenarios is increasingly appreciated. However, the specific processes and the resulting genomic footprints of selection are subject to much discussion. We studied the genomics of speciation between the two panmictic, sympatrically spawning sister species; European (Anguilla anguilla) and American eel (A. Rostrata). Divergence is assumed to have initiated more than 3 Ma, and although low gene flow still occurs, strong postzygotic barriers are present. Restriction-site-associated DNA (RAD) sequencing identified 328 300 SNPs for subsequent analysis. However, despite the presence of 3757 strongly differentiated SNPs (FST > 0.8), sliding window analyses of FST showed no larger genomic regions (i.e. hundreds of thousands to millions of bases) of elevated differentiation. Overall FST was 0.041, and linkage disequilibrium was virtually absent for SNPs separated by more than 1000 bp. We suggest this to reflect a case of genomic hitchhiking, where multiple regions are under directional selection between the species. However, low but biologically significant gene flow and high effective population sizes leading to very low genetic drift preclude accumulation of strong background differentiation. Genes containing candidate SNPs for positive selection showed significant enrichment for gene ontology (GO) terms relating to developmental processes and phosphorylation, which seems consistent with assumptions that differences in larval phase duration and migratory distances underlie speciation. Most SNPs under putative selection were found outside coding regions, lending support to emerging views that noncoding regions may be more functionally important than previously assumed. In total, the results demonstrate the necessity of interpreting genomic footprints of selection in the context of demographic parameters and life-history features of the studied species. © 2014 John Wiley & Sons Ltd.


Gagnaire P.-A.,Institute Of Biologie Integrative Et Des Systemes Ibis | Normandeau E.,Institute Of Biologie Integrative Et Des Systemes Ibis | Pavey S.A.,Institute Of Biologie Integrative Et Des Systemes Ibis | Bernatchez L.,Institute Of Biologie Integrative Et Des Systemes Ibis
Molecular Ecology | Year: 2013

The evolution of reproductive isolation in an ecological context may involve multiple facets of species divergence on which divergent selection may operate. These include variation in quantitative phenotypic traits, regulation of gene expression, and differential transmission of particular allelic combinations. Thus, an integrative approach to the speciation process involves identifying the genetic basis of these traits, in order to understand how they are affected by divergent selection in nature and how they ultimately contribute to reproductive isolation. In the Lake Whitefish (Coregonus clupeaformis), dwarf and normal species pairs sympatrically occur in several North American postglacial lakes. The limnetic dwarf whitefish distinguishes from its normal benthic relative by numerous life history, behavioural, morphological and gene expression traits, in relation with the exploitation of distinct ecological niches. Here, we have applied the RAD-Sequencing method to a hybrid backcross family to reconstruct a high-density genetic linkage map and perform QTL mapping in the Lake Whitefish. The 3061 cM map encompassed 3438 segregating RAD markers distributed over 40 linkage groups, for an average resolution of 0.89 cM. We mapped phenotypic and expression QTL underlying ecologically important traits as well as transmission ratio distortion QTL, and identified genomic regions harbouring clusters of such QTL. A narrow genomic region strongly associated with sex determination was also evidenced. Positional and functional information revealed in this study will be useful in ongoing population genomic studies to illuminate our understanding of the genomic architecture of reproductive isolation between whitefish species pairs. © 2012 John Wiley & Sons Ltd.


Naruzawa E.S.,Institute Of Biologie Integrative Et Des Systemes Ibis | Bernier L.,Institute Of Biologie Integrative Et Des Systemes Ibis
Fungal Biology | Year: 2014

Dutch elm disease (DED) fungi exhibit yeast-mycelium dimorphism both in planta and invitro. However, previously published data on the transition between these two growth forms invitro were mostly obtained from a single strain. We examined the effect of six factors on yeast-mycelium dimorphism invitro in ten strains of Ophiostoma ulmi, Ophiostoma novo-ulmi and Ophiostoma himal-ulmi. Nitrogen sources, calcium, and yeast extract, altogether with inhibitors of phosphodiesterase (caffeine) and dioxygenases (propyl gallate and salicylic acid) were tested in defined culture media. Morphological response to manipulation of several of these factors varied according to the strain of Ophiostoma being analysed. Responses ranged from no statistical differences in morphological transitions to stimulation or reversion of yeast-mycelium dimorphism with the treatments that were tested. These results suggest that different mechanisms and pathways operate in the control of the yeast-mycelium transition in DED pathogens. Oxylipins could be involved in the yeast-to-mycelium transition, since the addition of a dioxygenase inhibitor, salicylic acid, reduced mycelium production in all strains that were tested. © 2014 The British Mycological Society.


Benestan L.,Laval University | Quinn B.K.,University of New Brunswick | Maaroufi H.,Institute Of Biologie Integrative Et Des Systemes Ibis | Laporte M.,Laval University | And 4 more authors.
Molecular Ecology | Year: 2016

Investigating how environmental features shape the genetic structure of populations is crucial for understanding how they are potentially adapted to their habitats, as well as for sound management. In this study, we assessed the relative importance of spatial distribution, ocean currents and sea surface temperature (SST) on patterns of putatively neutral and adaptive genetic variation among American lobster from 19 locations using population differentiation (PD) approaches combined with environmental association (EA) analyses. First, PD approaches (using bayescan, arlequin and outflank) found 28 outlier SNPs putatively under divergent selection and 9770 neutral SNPs in common. Redundancy analysis revealed that spatial distribution, ocean current-mediated larval connectivity and SST explained 31.7% of the neutral genetic differentiation, with ocean currents driving the majority of this relationship (21.0%). After removing the influence of spatial distribution, no SST were significant for putatively neutral genetic variation whereas minimum annual SST still had a significant impact and explained 8.1% of the putatively adaptive genetic variation. Second, EA analyses (using Pearson correlation tests, bayescenv and lfmm) jointly identified seven SNPs as candidates for thermal adaptation. Covariation at these SNPs was assessed with a spatial multivariate analysis that highlighted a significant temperature association, after accounting for the influence of spatial distribution. Among the 505 candidate SNPs detected by at least one of the three approaches, we discovered three polymorphisms located in genes previously shown to play a role in thermal adaptation. Our results have implications for the management of the American lobster and provide a foundation on which to predict how this species will cope with climate change. © 2016 John Wiley & Sons Ltd


Jeukens J.,Institute Of Biologie Integrative Et Des Systemes Ibis | Jeukens J.,Laval University | Boyle B.,Institute Of Biologie Integrative Et Des Systemes Ibis | Boyle B.,Laval University | And 7 more authors.
Molecular Ecology Resources | Year: 2011

Genomic DNA sequences and other genomic resources are essential towards the elucidation of the genomic bases of adaptive divergence and reproductive isolation. Here, we describe the construction, characterization and screening of a nonarrayed BAC library for lake whitefish (Coregonus clupeaformis). We then show how the combined use of BAC library screening and next-generation sequencing can lead to efficient full-length assembly of candidate genes. The lake whitefish BAC library consists of 181050 clones derived from a single heterozygous fish. The mean insert size is 92Kb, representing 5.2 haploid genome equivalents. Ten BAC clones were isolated following a quantitative real-time PCR screening approach that targeted five previously identified candidate genes. Sequencing of these clones on a 454 GS FLX system yielded 178000 reads with a mean length of 358bp, for a total of 63.8Mb. De novo assembly and annotation then allowed retrieval of contigs corresponding to each candidate gene, which also contained up- and/or downstream noncoding sequences. These results suggest that the lake whitefish BAC library combined with next-generation sequencing technologies will be key resources to achieve a better understanding of both adaptive divergence and reproductive isolation in lake whitefish species pairs as well as salmonid evolution in general. © 2011 Blackwell Publishing Ltd.


Jacobsen M.W.,University of Aarhus | Pujolar J.M.,University of Aarhus | Gilbert M.T.,Copenhagen University | Moreno-Mayar J.V.,Copenhagen University | And 4 more authors.
Heredity | Year: 2014

Processes leading to speciation in oceanic environments without obvious physical barriers remain poorly known. European and American eel (Anguilla anguilla and A. rostrata) spawn in partial sympatry in the Sargasso Sea. Larvae are advected by the Gulf Stream and other currents towards the European/North African and North American coasts, respectively. We analyzed 104 mitogenomes from the two species along with mitogenomes of other Anguilla and outgroup species. We estimated divergence time between the two species to identify major events involved in speciation. We also considered two previously stated hypotheses: one where the ancestral species was present in only one continent but was advected across the Atlantic by ocean current changes and another where population declines during Pleistocene glaciations led to increasing vicariance, facilitating speciation. Divergence time was estimated to ∼3.38 Mya, coinciding with the closure of the Panama Gateway that led to reinforcement of the Gulf Stream. This could have advected larvae towards European/North African coasts, in which case American eel would be expected to be the ancestral species. This scenario could, however, not be unequivocally confirmed by analyses of dN/dS, nucleotide diversity and effective population size estimates. Extended bayesian skyline plots showed fluctuations of effective population sizes and declines during glaciations, and thus also lending support to the importance of vicariance during speciation. There was evidence for positive selection at the ATP6 and possibly ND5 genes, indicating a role in speciation. The findings suggest an important role of ocean current changes in speciation of marine organisms.


Di Poi C.,Institute Of Biologie Integrative Et Des Systemes Ibis | Di Poi C.,Laval University | Diss G.,PROTEO | Diss G.,Institute Of Biologie Integrative Et Des Systemes Ibis | And 4 more authors.
Biology Letters | Year: 2011

It is now widely accepted that the climate of our planet is changing, but it is still hard to predict the consequences of these changes on ecosystems. The impact is worst at the poles, with scientists concerned that impacts at lower latitudes will follow suit. Canada has a great responsibility and potential for studying the effects of climate changes on the ecological dynamics, given its geographical location and its scientific leadership in this field. The 5th annual meeting of the Canadian Society for Ecology and Evolution was held in the International Year of Biodiversity, to share recent advances in a wide variety of disciplines ranging from molecular biology to behavioural ecology, and to integrate them into a general view that will help us preserve biodiversity and limit the impact of climate change on ecosystems. This journal is © 2010 The Royal Society.

Loading Institute Of Biologie Integrative Et Des Systemes Ibis collaborators
Loading Institute Of Biologie Integrative Et Des Systemes Ibis collaborators