Time filter

Source Type

Carvalhal A.V.,Institute Of Biologia Experimental E Tecnologica | Carvalhal A.V.,University of Lisbon | Santos S.S.,Institute Of Biologia Experimental E Tecnologica | Carrondo M.J.T.,Instituto Of Biologia Experimental E Tecnologica | Carrondo M.J.T.,New University of Lisbon
Biotechnology Progress | Year: 2011

The presence of purines and pyrimidines bases, nucleosides, and nucleotides in the culture medium has shown to differently affect the growth of a Chinese hamster ovary (CHO) cell line producing the secreted form of the human placental alkaline phosphatase enzyme (SEAP; Carvalhal et al., Biotech Prog. 2003;19:69-83). CHO, BHK, as well as Sf9 cell growth was clearly reduced in the presence of purines but was not affected by pyrimidines at the concentrations tested. The knowledge about the mechanisms by which nucleotides exert their effect when present outside the cells remains very incomplete. The catabolism of both extracellular purines and pyrimidines was followed during the culture of CHO cells. Purines/pyrimidines nucleotides added at a concentration of 1 mM to the culture medium decreased to negligible concentrations in the first 2 days. Purine and pyrimidine catabolism originated only purinic and pyrimidic end-products, respectively. The comparison between AMP catabolism in serum-free cultures (CHO cells expressing Factor VII and Sf9 cells) and in cultures containing serum (CHO cells expressing SEAP and BHK cells expressing Factor VII) showed that AMP extracellular catabolism is mediated by both cells and enzymes present in the serum. This work shows that the quantification of purines and pyrimidines in the culture medium is essential in animal cell culture optimization. When using AMP addition as a chemical cell growth strategy for recombinant protein production improvement, AMP extracellular concentration monitoring allows the optimization of the multiple AMP addition strategy for a prolonged cell culture duration with high specific productivity. © 2011 American Institute of Chemical Engineers (AIChE). Source

Alminger M.,Chalmers University of Technology | Aura A.-M.,VTT Technical Research Center of Finland | Bohn T.,Center De Recherche Public Gabriel Lippmann | Dufour C.,French National Institute for Agricultural Research | And 10 more authors.
Comprehensive Reviews in Food Science and Food Safety | Year: 2014

There is an increased interest in secondary plant metabolites, such as polyphenols and carotenoids, due to their proposed health benefits. Much attention has focused on their bioavailability, a prerequisite for further physiological functions. As human studies are time consuming, costly, and restricted by ethical concerns, in vitro models for investigating the effects of digestion on these compounds have been developed and employed to predict their release from the food matrix, bioaccessibility, and assess changes in their profiles prior to absorption. Most typically, models simulate digestion in the oral cavity, the stomach, the small intestine, and, occasionally, the large intestine. A plethora of models have been reported, the choice mostly driven by the type of phytochemical studied, whether the purpose is screening or studying under close physiological conditions, and the availability of the model systems. Unfortunately, the diversity of model conditions has hampered the ability to compare results across different studies. For example, there is substantial variability in the time of digestion, concentrations of salts, enzymes, and bile acids used, pH, the inclusion of various digestion stages; and whether chosen conditions are static (with fixed concentrations of enzymes, bile salts, digesta, and so on) or dynamic (varying concentrations of these constituents). This review presents an overview of models that have been employed to study the digestion of both lipophilic and hydrophilic phytochemicals, comparing digestive conditions in vitro and in vivo and, finally, suggests a set of parameters for static models that resemble physiological conditions. © 2014 Institute of Food Technologists®. Source

Sousa M.F.Q.,New University of Lisbon | Sousa M.F.Q.,Institute Of Biologia Experimental E Tecnologica | Silva M.M.,New University of Lisbon | Silva M.M.,Institute Of Biologia Experimental E Tecnologica | And 12 more authors.
Biotechnology Progress | Year: 2015

Anchorage-dependent cell cultures are used for the production of viruses, viral vectors, and vaccines, as well as for various cell therapies and tissue engineering applications. Most of these applications currently rely on planar technologies for the generation of biological products. However, as new cell therapy product candidates move from clinical trials towards potential commercialization, planar platforms have proven to be inadequate to meet large-scale manufacturing demand. Therefore, a new scalable platform for culturing anchorage-dependent cells at high cell volumetric concentrations is urgently needed. One promising solution is to grow cells on microcarriers suspended in single-use bioreactors. Toward this goal, a novel bioreactor system utilizing an innovative Vertical-Wheel™ technology was evaluated for its potential to support scalable cell culture process development. Two anchorage-dependent human cell types were used: human lung carcinoma cells (A549 cell line) and human bone marrow-derived mesenchymal stem cells (hMSC). Key hydrodynamic parameters such as power input, mixing time, Kolmogorov length scale, and shear stress were estimated. The performance of Vertical-Wheel bioreactors (PBS-VW) was then evaluated for A549 cell growth and oncolytic adenovirus type 5 production as well as for hMSC expansion. Regarding the first cell model, higher cell growth and number of infectious viruses per cell were achieved when compared with stirred tank (ST) bioreactors. For the hMSC model, although higher percentages of proliferative cells could be reached in the PBS-VW compared with ST bioreactors, no significant differences in the cell volumetric concentration and expansion factor were observed. Noteworthy, the hMSC population generated in the PBS-VW showed a significantly lower percentage of apoptotic cells as well as reduced levels of HLA-DR positive cells. Overall, these results showed that process transfer from ST bioreactor to PBS-VW, and scale-up was successfully carried out for two different microcarrier-based cell cultures. Ultimately, the data herein generated demonstrate the potential of Vertical-Wheel bioreactors as a new scalable biomanufacturing platform for microcarrier-based cell cultures of complex biopharmaceuticals. Biotechnol. Prog., 31:1600-1612, 2015 © 2015 American Institute of Chemical Engineers. Source

Discover hidden collaborations