1 Institute of Bioinformatics

Bangalore, India

1 Institute of Bioinformatics

Bangalore, India
SEARCH FILTERS
Time filter
Source Type

PubMed | 10 ITC LSTC, Vision Research Foundation, KIIT University, National Health Research Institute and 5 more.
Type: Journal Article | Journal: Omics : a journal of integrative biology | Year: 2016

The frequency of Candida infections is currently rising, and thus adversely impacting global health. The situation is exacerbated by azole resistance developed by fungal pathogens. Candida tropicalis is an opportunistic pathogen that causes candidiasis, for example, in immune-compromised individuals, cancer patients, and those who undergo organ transplantation. It is a member of the non-albicans group of Candida that are known to be azole-resistant, and is frequently seen in individuals being treated for cancers, HIV-infection, and those who underwent bone marrow transplantation. Although the genome of C. tropicalis was sequenced in 2009, the genome annotation has not been supported by experimental validation. In the present study, we have carried out proteomics profiling of C. tropicalis using high-resolution Fourier transform mass spectrometry. We identified 2743 proteins, thus mapping nearly 44% of the computationally predicted protein-coding genes with peptide level evidence. In addition to identifying 2591 proteins in the cell lysate of this yeast, we also analyzed the proteome of the conditioned media of C. tropicalis culture and identified several unique secreted proteins among a total of 780 proteins. By subjecting the mass spectrometry data derived from cell lysate and conditioned media to proteogenomic analysis, we identified 86 novel genes, 12 novel exons, and corrected 49 computationally-predicted gene models. To our knowledge, this is the first high-throughput proteomics study of C. tropicalis validating predicted protein coding genes and refining the current genome annotation. The findings may prove useful in future global health efforts to fight against Candida infections.


PubMed | Amrita University, 8 Armed Forces Medical College, 1 Institute of Bioinformatics and 3 Vittala International Institute of Ophthalmology
Type: Journal Article | Journal: Omics : a journal of integrative biology | Year: 2016

The annual economic burden of visual disorders in the United States was estimated at $139 billion. Ophthalmology is therefore one of the salient application fields of postgenomics biotechnologies such as proteomics in the pursuit of global precision medicine. Interestingly, the protein composition of the human iris tissue still remains largely unexplored. In this context, the uveal tract constitutes the vascular middle coat of the eye and is formed by the choroid, ciliary body, and iris. The iris forms the anterior most part of the uvea. It is a thin muscular diaphragm with a central perforation called pupil. Inflammation of the uvea is termed uveitis and causes reduced vision or blindness. However, the pathogenesis of the spectrum of diseases causing uveitis is still not very well understood. We investigated the proteome of the iris tissue harvested from healthy donor eyes that were enucleated within 6h of death using high-resolution Fourier transform mass spectrometry. A total of 4959 nonredundant proteins were identified in the human iris, which included proteins involved in signaling, cell communication, metabolism, immune response, and transport. This study is the first attempt to comprehensively profile the global proteome of the human iris tissue and, thus, offers the potential to facilitate biomedical research into pathological diseases of the uvea such as Behcets disease, Vogt Koyonagi Haradas disease, and juvenile rheumatoid arthritis. Finally, we make a call to the broader visual health and ophthalmology community that proteomics offers a veritable prospect to obtain a systems scale, functional, and dynamic picture of the eye tissue in health and disease. This knowledge is ultimately pertinent for precision medicine diagnostics and therapeutics innovation to address the pressing needs of the 21st century visual health.


PubMed | Johns Hopkins University, 1 Institute of Bioinformatics and L'Oréal
Type: Journal Article | Journal: Omics : a journal of integrative biology | Year: 2016

Cigarette smoking has been associated with multiple negative effects on human skin. Long-term physiological effects of cigarette smoke are through chronic and not acute exposure. Molecular alterations due to chronic exposure to cigarette smoke remain unclear. Primary human skin keratinocytes chronically exposed to cigarette smoke condensate (CSC) showed a decreased wound-healing capacity with an increased expression of NRF2 and MMP9. Using quantitative proteomics, we identified 4728 proteins, of which 105 proteins were overexpressed (2-fold) and 41 proteins were downregulated (2-fold) in primary skin keratinocytes chronically exposed to CSC. We observed an alteration in the expression of several proteins involved in maintenance of epithelial barrier integrity, including keratin 80 (5.3 fold, p value 2.510


PubMed | 4 National Institute of Pathology, Rajiv Gandhi Center for Biotechnology and 1 Institute of Bioinformatics
Type: Journal Article | Journal: Omics : a journal of integrative biology | Year: 2016

Glioblastoma multiforme (GBM) is one of the most lethal brain tumors with an inadequately understood pathophysiology. Biomarkers that guide accurate diagnosis and treatment decisions would greatly support precision medicine for GBM. Previous studies of GBM have focused on signaling pathways such as epidermal growth factor receptor (EGFR), platelet-derived growth factor receptors (PDGFRs), notch, wnt, and others, identified with single omics technology platforms (genomics, transcriptomics, or proteomics), but not with their integrated use. In this context, we report here a multi-omics pathway view, expanded through integration of the expression data at transcriptomic and proteomic levels, followed by selection of a functionally related group of proteins such as kinases deregulated in GBM. By using this strategy, we observed a highly significant enrichment of the gonadotropin-releasing hormone (GnRH) signaling pathway that was not deciphered with single omics datasets. The curation of the GnRH pathway with extensive literature analysis brought about a comprehensive annotation of the pathway, which included several additional pathway members that were not previously annotated. A targeted search resulted in identification of additional nonkinase members of the pathway in the GBM multi-omics datasets. We found evidence of GnRH receptor expression in GBM and other cancers. We offer here an updated generic pathway map of GnRH signaling, show its enrichment in the context of GBM, and discuss its plausible cross-connectivity with EGFR, wnt, calcium, and focal adhesion kinase signaling pathways that were earlier shown to be the top deregulated pathways in GBM. In conclusion, this study demonstrates the promise of multi-omics research and analyses to better understand complex cancers and suggests continued efforts and research in this direction in the field of integrative biology.


PubMed | 1 Institute of Bioinformatics
Type: Journal Article | Journal: Omics : a journal of integrative biology | Year: 2014

Among the neglected tropical diseases, leishmaniasis is one of the most devastating, resulting in significant mortality and contributing to nearly 2 million disability-adjusted life years. Cutaneous leishmaniasis is a debilitating disorder caused by the kinetoplastid protozoan parasite Leishmania major, which results in disfiguration and scars. L. major genome was the first to be sequenced within the genus Leishmania. Use of proteomic data for annotating genomes is a complementary approach to conventional genome annotation approaches and is referred to as proteogenomics. We have used a proteogenomics-based approach to map the proteome of L. major and also annotate its genome. In this study, we searched L. major promastigote proteomic data against the annotated L. major protein database. Additionally, we searched the proteomic data against six-frame translated L. major genome. In all, we identified 3613 proteins in L. major promastigotes, which covered 43% of its proteome. We also identified 26 genome search-specific peptides, which led to the identification of three novel genes previously not identified in L. major. We also corrected the annotation of N-termini of 15 genes, which resulted in extension of their protein products. We have validated our proteogenomics findings by RT-PCR and sequencing. In addition, our study resulted in identification of 266 N-terminally acetylated peptides in L. major, one of the largest acetylated peptide datasets thus far in Leishmania. This dataset should be a valuable resource to researchers focusing on neglected tropical diseases.


PubMed | 1 Institute of Bioinformatics
Type: Journal Article | Journal: Omics : a journal of integrative biology | Year: 2014

Anopheles gambiae has a well-adapted system for host localization, feeding, and mating behavior, which are all governed by neuronal processes in the brain. However, there are no published reports characterizing the brain proteome to elucidate neuronal signaling mechanisms in the vector. To this end, a large-scale mapping of the brain proteome of An. gambiae was carried out using high resolution tandem mass spectrometry, revealing a repertoire of >1800 proteins, of which 15% could not be assigned any function. A large proportion of the identified proteins were predicted to be involved in diverse biological processes including metabolism, transport, protein synthesis, and olfaction. This study also led to the identification of 10 GPCR classes of proteins, which could govern sensory pathways in mosquitoes. Proteins involved in metabolic and neural processes, chromatin modeling, and synaptic vesicle transport associated with neuronal transmission were predominantly expressed in the brain. Proteogenomic analysis expanded our findings with the identification of 15 novel genes and 71 cases of gene refinements, a subset of which were validated by RT-PCR and sequencing. Overall, our study offers valuable insights into the brain physiology of the vector that could possibly open avenues for intervention strategies for malaria in the future.

Loading 1 Institute of Bioinformatics collaborators
Loading 1 Institute of Bioinformatics collaborators