Institute of Biochemistry of the Romanian Academy

Bucharest, Romania

Institute of Biochemistry of the Romanian Academy

Bucharest, Romania
Time filter
Source Type

Craciunescu O.,Romanian National Institute for Research and Development for Biological Sciences | Moldovan L.,Romanian National Institute for Research and Development for Biological Sciences | Moisei M.,Institute of Biochemistry of the Romanian Academy | Trif M.,Institute of Biochemistry of the Romanian Academy
Journal of Liposome Research | Year: 2013

Liposomes have the capacity to be used as efficient, biodegradable and nontoxic carriers of bioactive molecules and are able to better control their delivery at the site of interest. The objective of this study was to obtain and characterize an appropriate liposomal formulation of the bioactive molecule chondroitin sulfate (CS) for its use in the local treatment of inflammatory and degenerative disorders, specifically osteoarthritis (OA). Empty liposomes (L) and CS-entrapping liposomes (L-CS) were prepared by thin film hydration method followed by sonication and extrusion. They were characterized in terms of size, polydispersity index and ζ-potential by dynamic light scattering (DLS) and morphology by transmission electron microscopy. The effect of L-CS formulation on viability and morphology of mouse fibroblast cells and its biologic activity in hydrogen peroxide-stimulated cells were compared to those of L, non-encapsulated CS and a mixture of L and CS (L+CS). Our results demonstrated a high biocompatibility of L-CS and a more efficient cell protection against oxidative damage using L-CS treatment than CS or L+CS treatment. Also, L-CS exhibited a higher anti-inflammatory activity than CS in stimulated cells by reducing the level of IL-8 and TNF-α proinflammatory cytokines. The overall results suggest that the delivery of CS in liposomal formulation could improve its therapeutic potential in intra-articular treatment of OA. © 2013 Informa UK Ltd All rights reserved.

Dorobantu C.,Institute of Biochemistry of the Romanian Academy | Macovei A.,Institute of Biochemistry of the Romanian Academy | Lazar C.,Institute of Biochemistry of the Romanian Academy | Dwek R.A.,University of Oxford | And 2 more authors.
Journal of Virology | Year: 2011

Previous reports have shown that cholesterol depletion of the membrane envelope of the hepatitis B virus (HBV) impairs viral infection of target cells. A potential function of this lipid in later steps of the viral life cycle remained controversial, with secretion of virions and subviral particles (SVP) being either inhibited or not affected, depending on the experimental approach employed to decrease the intracellular cholesterol level. This work addressed the role of host cell cholesterol on HBV replication, assembly, and secretion, using an alternative method to inhibition of the enzymes involved in the biosynthesis pathway. Growing HBV-producing cells with lipoprotein-depleted serum (LPDS) resulted in an important reduction of the amount of cholesterol within 24 h of treatment (about 40%). Cell exposure to chlorpromazine, an inhibitor of the clathrin-mediated pathway used by the low-density lipoprotein receptor for endocytosis, also impacted the cholesterol level; however, this level of inhibition was not achievable when the synthesis inhibitor lovastatin was used. HBV secretion was significantly inhibited in cholesterol-depleted cells (by ̃80%), while SVP release remained unaffected. The viral DNA genome accumulated in LPDS-treated cells in a time-dependent manner. Specific immunoprecipitation of nucleocapsids and mature virions revealed an increased amount of naked nucleocapsids, while synthesis of the envelope proteins occurred as normally. Following analysis of the large envelope protein conformation in purified microsomes, we concluded that cholesterol is important in maintaining the dual topology of this polypeptide, which is critical for viral envelopment. © 2011, American Society for Microbiology.

Lazar C.,Institute of Biochemistry of the Romanian Academy | Uta M.,Institute of Biochemistry of the Romanian Academy | Petrescu S.M.,Institute of Biochemistry of the Romanian Academy | Branza-Nichita N.,Institute of Biochemistry of the Romanian Academy
Cellular Microbiology | Year: 2017

Cells replicating the human hepatitis B virus (HBV) express high levels of degradation-enhancing α-mannosidase-like proteins (EDEMs), a family of proteins involved in the endoplasmic reticulum associated degradation, one of the pathways activated during the unfolded protein response. Owing to their α-1,2 mannosidase activity, the EDEM1–3 proteins are able to process the N-linked glycans of misfolded or incompletely folded proteins, providing the recognition signal for their subsequent degradation. The HBV small (S), medium (M), and large (L) surface proteins bear an N-linked glycosylation site in the common S domain that is partially occupied in all proteins. The M protein contains an additional site in its preS2 domain, which is always functional. Here, we report that these oligosaccharides are processed by EDEMs, more efficiently by EDEM3, which induces degradation of L and S proteins, accompanied by a reduction of subviral particles production. In striking contrast, M not only is spared from degradation but its trafficking is also accelerated leading to an improved secretion. This unusual behavior of the M protein requires strictly the mannose trimming of the preS2 N-linked glycan. Furthermore, we show that HBV secretion is significantly inhibited under strong endoplasmic reticulum stress conditions when M expression is prevented by mutagenesis of the viral genome. These observations unfold unique properties of the M protein in the HBV life cycle during unfolded protein response and point to alternative mechanisms employed by EDEMs to alleviate this stress in case of necessity by promoting glycoprotein trafficking rather than degradation. © 2016 John Wiley & Sons Ltd

Maekawa T.,Max Planck Institute For Pflanzenzuchtungsforschung | Cheng W.,Beijing Normal University | Cheng W.,China National Institute of Biological Sciences | Spiridon L.N.,Institute of Biochemistry of the Romanian Academy | And 12 more authors.
Cell Host and Microbe | Year: 2011

Plants and animals have evolved structurally related innate immune sensors, designated NLRs, to detect intracellular nonself molecules. NLRs are modular, consisting of N-terminal coiled-coil (CC) or TOLL/interleukin-1 receptor (TIR) domains, a central nucleotide-binding (NB) domain, and C-terminal leucine-rich repeats (LRRs). The polymorphic barley mildew A (MLA) locus encodes CC-containing allelic immune receptors recognizing effectors of the pathogenic powdery mildew fungus. We report the crystal structure of an MLA receptor's invariant CC domain, which reveals a rod-shaped homodimer. MLA receptors also self-associate in vivo, but self-association appears to be independent of effector-triggered receptor activation. MLA CC mutants that fail to self-interact impair in planta cell death activity triggered by the CC domain alone and by an autoactive full-length MLA receptor that mimics its ATP-bound state. Thus, CC domain-dependent dimerization of the immune sensor defines a minimal functional unit and implies a role for the dimeric CC module in downstream immune signaling. © 2011 Elsevier Inc.

Avram S.,University of Bucharest | Milac A.L.,Institute of Biochemistry of the Romanian Academy | Carta F.,University of Florence | Supuran C.T.,University of Florence
Journal of Enzyme Inhibition and Medicinal Chemistry | Year: 2012

Dithiocarbamates (DTC) are promising compounds with potential applications in antitumoral and glaucoma therapy. Our aim is to understand molecular features affecting DTC interaction with carbonic anhydrases (CAs), zinc-containing enzymes maintaining acid-base balance in blood and other tissues. To this end, we generate QSAR models based on a compound series containing 25 DTC, inhibitors of four human (h) CAs isoforms: hCA I, II, IX and XII. We establish that critical physicochemical parameters for DTC inhibitory activity are: hydrophobic, electronic, steric, topological and shape. The predictive power of our QSAR models is indicated by significant values of statistical coefficients: cross-validated correlation q2 (0.55-0.73), fitted correlation r2 (0.75-0.84) and standard error of prediction (0.47-0.23). Based on the established QSAR equations, we analyse 22 new DTC derivatives and identify DTC dicarboxilic acids derivatives and their esters as potentially improved inhibitors of CA I, II, IX and XII. © 2013 Informa UK, Ltd.

Anishkin A.,University of Maryland University College | Milac A.L.,U.S. National Institutes of Health | Milac A.L.,Institute of Biochemistry of the Romanian Academy | Robert Guy H.,U.S. National Institutes of Health
Proteins: Structure, Function and Bioinformatics | Year: 2010

Most crystallized homo-oligomeric ion channels are highly symmetric, which dramatically decreases conformational space and facilitates building homology models (HMs). However, in molecular dynamics (MD) simulations channels deviate from ideal symmetry and accumulate thermal defects, which complicate the refinement of HMs using MD. In this work we evaluate the ability of symmetry constrained MD simulations to improve HMs accuracy, using an approach conceptually similar to Critical Assessment of techniques for protein Structure Prediction (CASP) competition: build HMs of channels with known structure and evaluate the efficiency of proposed methods in improving HMs accuracy (measured as deviation from experimental structure). Results indicate that unrestrained MD does not improve the accuracy of HMs, instantaneous symmetrization improves accuracy but not stability of HMs during subsequent unrestrained MD, while gradually imposing symmetry constraints improves both accuracy (by 5-50%) and stability of HMs. Moreover, accuracy and stability are strongly correlated, making stability a reliable criterion in predicting the accuracy of new HMs. © 2009 Wiley-Liss, Inc.

Popescu C.-I.,University of Lille Nord de France | Popescu C.-I.,Institute of Biochemistry of the Romanian Academy | Callens N.,University of Lille Nord de France | Trinel D.,Lille University of Science and Technology | And 8 more authors.
PLoS Pathogens | Year: 2011

Growing experimental evidence indicates that, in addition to the physical virion components, the non-structural proteins of hepatitis C virus (HCV) are intimately involved in orchestrating morphogenesis. Since it is dispensable for HCV RNA replication, the non-structural viral protein NS2 is suggested to play a central role in HCV particle assembly. However, despite genetic evidences, we have almost no understanding about NS2 protein-protein interactions and their role in the production of infectious particles. Here, we used co-immunoprecipitation and/or fluorescence resonance energy transfer with fluorescence lifetime imaging microscopy analyses to study the interactions between NS2 and the viroporin p7 and the HCV glycoprotein E2. In addition, we used alanine scanning insertion mutagenesis as well as other mutations in the context of an infectious virus to investigate the functional role of NS2 in HCV assembly. Finally, the subcellular localization of NS2 and several mutants was analyzed by confocal microscopy. Our data demonstrate molecular interactions between NS2 and p7 and E2. Furthermore, we show that, in the context of an infectious virus, NS2 accumulates over time in endoplasmic reticulum-derived dotted structures and colocalizes with both the envelope glycoproteins and components of the replication complex in close proximity to the HCV core protein and lipid droplets, a location that has been shown to be essential for virus assembly. We show that NS2 transmembrane region is crucial for both E2 interaction and subcellular localization. Moreover, specific mutations in core, envelope proteins, p7 and NS5A reported to abolish viral assembly changed the subcellular localization of NS2 protein. Together, these observations indicate that NS2 protein attracts the envelope proteins at the assembly site and it crosstalks with non-structural proteins for virus assembly. © 2011 Popescu et al.

Sokolowska I.,Clarkson University | Dorobantu C.,Institute of Biochemistry of the Romanian Academy | Woods A.G.,Clarkson University | Macovei A.,Institute of Biochemistry of the Romanian Academy | And 2 more authors.
Proteome Science | Year: 2012

Liver infection with hepatitis B virus (HBV), a DNA virus of the Hepadnaviridae family, leads to severe disease, such as fibrosis, cirrhosis and hepatocellular carcinoma. The early steps of the viral life cycle are largely obscure and the host cell plasma membrane receptors are not known. HepaRG is the only proliferating cell line supporting HBV infection in vitro, following specific differentiation, allowing for investigation of new host host-cell factors involved in viral entry, within a more robust and reproducible environment. Viral infection generally begins with receptor recognition at the host cell surface, following highly specific cell-virus interactions. Most of these interactions are expected to take place at the plasma membrane of the HepaRG cells. In the present study, we used this cell line to explore changes between the plasma membrane of undifferentiated (-) and differentiated (+) cells and to identify differentially-regulated proteins or signaling networks that might potentially be involved in HBV entry. Our initial study identified a series of proteins that are differentially expressed in the plasma membrane of (-) and (+) cells and are good candidates for potential cell-virus interactions. To our knowledge, this is the first study using functional proteomics to study plasma membrane proteins from HepaRG cells, providing a platform for future experiments that will allow us to understand the cell-virus interaction and mechanism of HBV viral infection. © 2012 Sokolowska et al.; licensee BioMed Central Ltd.

Lazar C.,Institute of Biochemistry of the Romanian Academy | Macovei A.,Institute of Biochemistry of the Romanian Academy | Petrescu S.,Institute of Biochemistry of the Romanian Academy | Branza-Nichita N.,Institute of Biochemistry of the Romanian Academy
PLoS ONE | Year: 2012

Hepatitis B virus (HBV) belongs to the Hepadnaviridae family of enveloped DNA viruses. It was previously shown that HBV can induce endoplasmic reticulum (ER) stress and activate the IRE1-XBP1 pathway of the unfolded protein response (UPR), through the expression of the viral regulatory protein X (HBx). However, it remained obscure whether or not this activation had any functional consequences on the target genes of the UPR pathway. Of these targets, the ER degradation-enhancing, mannosidase-like proteins (EDEMs) are thought to play an important role in relieving the ER stress during UPR, by recognizing terminally misfolded glycoproteins and delivering them to the ER-associated degradation (ERAD). In this study, we investigated the role of EDEMs in the HBV life-cycle. We found that synthesis of EDEMs (EDEM1 and its homologues, EDEM2 and EDEM3) is significantly up-regulated in cells with persistent or transient HBV replication. Co-expression of the wild-type HBV envelope proteins with EDEM1 resulted in their massive degradation, a process reversed by EDEM1 silencing. Surprisingly, the autophagy/lysosomes, rather than the proteasome were involved in disposal of the HBV envelope proteins. Importantly, inhibition of the endogenous EDEM1 expression in HBV replicating cells significantly increased secretion of both, enveloped virus and subviral particles. This is the first report showing that HBV activates the ERAD pathway, which, in turn, reduces the amount of envelope proteins, possibly as a mechanism to control the level of virus particles in infected cells and facilitate the establishment of chronic infections. © 2012 Lazar et al.

Popa I.,Institute of Biochemistry of the Romanian Academy | Ganea E.,Institute of Biochemistry of the Romanian Academy | Petrescu S.M.,Institute of Biochemistry of the Romanian Academy
Biochemistry and Cell Biology | Year: 2014

The receptor for advanced glycation end products (RAGE) is involved in multiple stages of tumor development and malignization. To gain further knowledge on the RAGE role in tumor progression, we investigated the receptor expression profile and its subcellular localization in melanoma cells at different stages of malignancy. We found that RAGE clustered at membrane ruffles and leading edges, and at sites of cell-to-cell contact in primary melanoma cells (e.g., MelJuSo), in contrast with a more dispersed localization in metastatic cells (e.g., SK-Mel28). RAGE silencing by RNAi selectively inhibited migration of MelJuSo cells, whilst having no influence on SK-Mel28 cell migration, in a "wound healing" assay. Western blot detection of RAGE showed a more complex RAGE oligomerization in MelJuSo cells compared to melanocytes and SK-Mel28 cells. By competing the binding of antibodies with recombinant soluble RAGE, an oligomeric form running at approximately 200 kDa was detected, as it was the monomeric RAGE of 55-60 kDa. SDS-PAGE electrophoresis under reducing versus nonreducing conditions indicated that the oligomer of about 200 kDa is formed by disulfide bonds, but other interactions are likely to be important for RAGE multimerization in melanoma cells. Immunofluorescence microscopy revealed that treatment with two cholesterol-chelating drugs, nystatin and filipin, significantly affected RAGE localization in MelJuSo cells. SK-Mel28 cells showed a reduced RAGE glycosylation and association with cholesterol-rich membranes and also a considerable downregulation of the soluble forms. Our results indicate that RAGE isoform expression and subcellular localization could be important determinants for the regulation of its function in tumor progression. © 2014 Published by NRC Research Press.

Loading Institute of Biochemistry of the Romanian Academy collaborators
Loading Institute of Biochemistry of the Romanian Academy collaborators