Time filter

Source Type

Wu J.,Shanghai JiaoTong University | Cai Y.,Nanjing Southeast University | Fu Y.,Shanghai JiaoTong University | Tan Z.,Institute of Biliary Tract Disease | And 5 more authors.
Applied Mathematics and Mechanics (English Edition) | Year: 2015

The changes of blood perfusion and oxygen transport in tumors during tumor vascular normalization are studied with 3-dimensional mathematical modeling and numerical simulation. The models of tumor angiogenesis and vascular-disrupting are used to simulate “un-normalized” and “normalized” vasculatures. A new model combining tumor hemodynamics and oxygen transport is developed. In this model, the intravascular-transvascular-interstitial flow with red blood cell (RBC) delivery is tightly coupled, and the oxygen resource is produced by heterogeneous distribution of hematocrit from the flow simulation. The results show that both tumor blood perfusion and hematocrit in the vessels increase, and the hypoxia microenvironment in the tumor center is greatly improved during vascular normalization. The total oxygen content inside the tumor tissue increases by about 67%, 51%, and 95% for the three approaches of vascular normalization, respectively. The elevation of oxygen concentration in tumors can improve its metabolic environment, and consequently reduce malignancy of tumor cells. It can also enhance radiation and chemotherapeutics to tumors. © 2015, Shanghai University and Springer-Verlag Berlin Heidelberg. Source

Wang X.-A.,Institute of Biliary Tract Disease | Wang X.-A.,Laboratory of General Surgery | Wang X.-A.,Shanghai JiaoTong University | Xiang S.-S.,Institute of Biliary Tract Disease | And 51 more authors.
Molecules | Year: 2014

Gallbladder cancer is the most common malignant tumor of the biliary tract, and this condition has a rather dismal prognosis, with an extremely low five-year survival rate. To improve the outcome of unresectable and recurrent gallbladder cancer, it is necessary to develop new effective treatments and drugs. The purpose of the present study was to evaluate the effects of cordycepin on human gallbladder cells and uncover the molecular mechanisms responsible for these effects. The Cell Counting Kit-8 (CCK-8) and colony formation assays revealed that cordycepin affected the viability and proliferation of human gallbladder cancer cells in a dose- and time-dependent manner. Flow cytometric analysis showed that cordycepin induced S phase arrest in human gallbladder cancer cell lines(NOZ and GBC-SD cells). Cordycepin-induced apoptosis was observed using an Annexin V/propidium iodide (PI) double-staining assay, and the mitochondrial membrane potential (ΔΨm) decreased in a dose-dependent manner. Additionally, western blot analysis revealed the upregulation of cleaved-caspase-3, cleaved-caspase-9, cleaved-PARP and Bax and the downregulation of Bcl-2, cyclin A and Cdk-2 in cordycepin-treated cells. Moreover, cordycepin inhibited tumor growth in nude mice bearing NOZ tumors. Our results indicate that this drug may represent an effective treatment for gallbladder carcinoma. © 2014 by the authors. Source

Discover hidden collaborations