Time filter

Source Type

Agency: Cordis | Branch: H2020 | Program: RIA | Phase: ICT-10-2015 | Award Amount: 1.97M | Year: 2016

WHY: 2015 has been named by the United Nations as the International Year of Light (light2015.org). Light has had many obvious benefits for human mankind, but it also poses some relevant threats: the everyday-increasing excess of light thrown by humans to the sky seriously threatens to remove forever one of humanitys natural wonders, the view of our universe. More importantly, it has also an adverse impact on our environment and economy (energy wasted to the sky costs 2 billion US$ per year in the USA and 6,3 billion per year in Europe) and on the health of hundreds of species, including pathologies in human beings (e.g., stress, insomnia). Many professional and amateur scientists are already fighting against light pollution. However, it is necessary to increase social awareness about the importance of preserving the darkness of our cities and environment. WHAT: STARS4ALL will create an Light Pollution Initiative (LPI) incubation platform that will allow generating (and maintaining) customizable on-demand domain-focused LPIs (e.g., a light pollution working group in Brussels). The platform will be self-sustainable: it will integrate a crowdfunding tool to obtain funding for the LPIs; it will consider incentives that motivate citizens to participate in LPIs, as well as policies to handle those incentives; and it will provide innovations in data acquisition from sensors deployed by citizens and in games with a purpose. HOW: STARS4ALL will initially deploy 10 LPIs, which will be available by the end of the 1st semester of project execution, and will be operating and creating collective awareness during the rest of the project. At that moment we pave the way the creation of other LPIs by citizens, specially in other disciplines such as Energy Saving, Biodiversity, and Human Health, and will organize open competitions among them.

Agency: Cordis | Branch: H2020 | Program: RIA | Phase: COMPET-05-2015 | Award Amount: 2.18M | Year: 2016

Understanding the Physics of Inflation is one of the key questions in present-day fundamental cosmology. For this purpose, the study of the polarization of the Cosmic Microwave Background (CMB) anisotropies provide a unique probe to the early Universe. However, it is well-known that foreground signals, and in particular emission from our Galaxy, will be the major limiting factor of the possible constraints on the existence of B-modes. This proposal will make use of ESAs PLANCK satellite mission (30-857 GHz), in combination with the ground-based observations provided by the QUIJOTE experiment (10-20 GHz) and other ancillary radio maps, to address the still open problem of the detailed physical modelling of the radio foregrounds in polarization. This project will provide: a) state-of-the-art legacy maps of the synchrotron and the anomalous microwave emission (AME) in the Northern sky; b) a detailed characterization of the synchrotron spectral index, and the implications for cosmic-rays electron physics; c) a model of the large-scale properties of the Galactic magnetic field; d) a detailed characterization of the AME, including its contribution in polarization; and e) the best complete and statistically significant multi-frequency catalogue (from 10 to 217 GHz) of radio sources in both temperature and polarization. The combination of PLANCK and QUIJOTE will provide reference data products which will be an asset for other sub-orbital experiments, as well as in the preparation of future space missions. Finally, we will also provide specific software tools for a more efficient exploitation of our data products, with functionalities far beyond of the existing ones. These tools will not only allow an advanced visualization, but also they will allow the possibility of carrying out specific predictions/simulations for the design of future B-mode experiments, which we expect it will be widely used by the Cosmology and Astrophysics community.

Linares M.,Institute of Astrophysics of Canarias | Linares M.,University of La Laguna
Astrophysical Journal | Year: 2014

Compact binary millisecond pulsars with main-sequence donors, often referred to as "redbacks," constitute the long-sought link between low-mass X-ray binaries and millisecond radio pulsars and offer a unique probe of the interaction between pulsar winds and accretion flows. We present a systematic study of eight nearby redbacks, using more than 100 observations obtained with Swift's X-ray Telescope. We distinguish between three main states: pulsar, disk, and outburst states. We find X-ray mode switching in the disk state of PSR J1023+0038 and XSS J12270-4859, similar to what was found in the other redback that showed evidence for accretion: rapid, recurrent changes in X-ray luminosity (0.5-10 keV, L X), between (6-9) × 1032 erg s-1 (disk-passive state) and (3-5) × 1033 erg s-1 (disk-active state). This strongly suggests that mode switching - which has not been observed in quiescent low-mass X-ray binaries - is universal among redback millisecond pulsars in the disk state. We briefly explore the implications for accretion disk truncation and find that the inferred magnetospheric radius in the disk state of PSR J1023+0038 and XSS J12270-4859 lies outside the light cylinder. Finally, we note that all three redbacks that have developed accretion disks have relatively high L X in the pulsar state (>1032 erg s-1). © 2014. The American Astronomical Society. All rights reserved.. Source

Martinez Pillet V.,Institute of Astrophysics of Canarias
Space Science Reviews | Year: 2013

Various aspects of the magnetism of the quiet sun are reviewed. The suggestion that a small scale dynamo acting at granular scales generates what we call the quiet sun fields is studied in some detail. Although dynamo action has been proved numerically, it is argued that current simulations are still far from achieving the complexity that might be present on the Sun. We based this statement not so much on the low magnetic Reynolds numbers used in the simulations but, above all, in the smallness of the kinetic Reynolds numbers employed by them. It is argued that the low magnetic Prandtl number at the solar surface may pose unexpected problems for the identification of the observed internetwork fields with dynamo action at granular scales. Some form of turbulent dynamo at bigger (and deeper) scales is favored. The comparison between the internetwork fields observed by Hinode and the magnetism inferred from Hanle measurements are converging towards a similar description. They are both described as randomly oriented, largely transverse fields in the several hecto-Gauss range. These similarities are ever making more natural to assume that they are the same. However, and because of the large voids of magnetic flux observed in the spatial distribution of the internetwork fields, it is argued that they are not likely to be generated by dynamo action in the intergranular lanes. It is concluded that if a dynamo is acting at granular scales, the end product might have not been observed yet at current spatial resolutions and sensitivities with the Zeeman effect. Thus an effort to increase these resolutions and polarimetric sensitivities must be made. New ground- and space-based telescopes are needed. The opportunity offered by the Solar Orbiter mission to observe the Quiet Sun dynamics at the poles is seen as one of the most important tests for confirming the existence, or otherwise, of a granularly driven surface dynamo. © 2013 Springer Science+Business Media Dordrecht. Source

Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: SPA.2012.2.1-01 | Award Amount: 3.22M | Year: 2013

Observations of oscillations on the solar and stellar surfaces have emerged as a unique and extremely powerful tool to gain information on, and understanding of, the processes in the Sun and stars, and the origin of the variability in the solar and stellar output. Through helio- and asteroseismology detailed inferences of the internal structure and rotation of the Sun, and extensive information on the properties of a broad range of stars can be obtained. Space-based observations play a leading role in helio- and asteroseismology, in close synergy with ground-based observations as well as theoretical modelling. Long observing sequences are essential for measuring the oscillation frequencies with the precision required, and to extract the lowest mode frequencies involved. The enormous value of long-term space-based observations has been demonstrated in the solar case by the joint ESA/NASA SOHO mission (Solar and Heliospheric Observatory. This is now being followed by instruments on the NASA Solar Dynamics Observatory (SDO) mission.Large volumes of exquisite data on stellar oscillations of stars with a broad range of masses and ages are being collected by the CNES space mission CoRoT (Convection, Rotation and Transit) and the NASA Kepler mission. Extensive Earth-based observations of solar oscillations have been undertaken with the GONG network (Global Oscillations Network Group) and the Birmingham Oscillation Network (BiSON) to ensure continuous monitoring. A asteroseismic network, SONG (Stellar Observations Network Group) is being established under Danish leadership. Equally important for asteroseismology is the availability of supplementary data on the stars from more traditional observations, to determine their surface temperature, composition, radius, etc. Only through a coordinated use of the space- and ground-based data can the full potential of helio- and asteroseismology be realized.

Discover hidden collaborations