Time filter

Source Type

Huang Z.,Lanzhou University | Huang J.,Lanzhou University | Hayasaka T.,Tohoku University | Wang S.,Lanzhou University | And 3 more authors.
Environmental Research Letters | Year: 2015

Asian dust can be transported long distances from the Taklimakan or Gobi desert to North America across the Pacific Ocean, and it has been found to have a significant impact on ecosystems, climate, and human health. Although it is well known that Asian dust is transported all over the globe, there are limited observations reporting Asian dust transported to the Arctic. We report a case study of a large-scale heavy dust storm over East Asia on 19 March 2010, as shown by ground-based and space-borne multi-sensor observations, as well as NCEP/NCAR reanalysis data and HYSPLIT trajectories. Our analysis suggests that Asian dust aerosols were transported from northwest China to the Arctic within 5 days, crossing eastern China, Japan and Siberia before reaching the Arctic. The results indicate that Asian dust can be transported for long distances along a previously unreported transport path. Evidence from other dust events over the past decade (2001-2010) also supports our results, indicating that dust from 25.2% of Asian dust events has potentially been transported directly to the Arctic. The transport of Asian dust to the Arctic is due to cyclones and the enhanced East Asia Trough (EAT), which are very common synoptic systems over East Asia. This suggests that many other large dust events would have generated long-range transport of dust to the Arctic along this path in the past. Thus, Asian dust potentially affects the Arctic climate and ecosystem, making climate change in the Arctic much more complex to be fully understood. © 2015 IOP Publishing Ltd. Source

Veettil B.K.,Federal University of Rio Grande do Sul | Wang S.,Institute of Arid Meteorology CMA | Bremer U.F.,Federal University of Rio Grande do Sul | de Souza S.F.,Federal University of Rio Grande do Sul | Simoes J.C.,Federal University of Rio Grande do Sul
Theoretical and Applied Climatology | Year: 2016

This paper describes the changes in the annual maximum snowlines of a selected set of mountain glaciers at the southern end of the Cordillera Blanca between 1984 and 2015 using satellite images. Furthermore, we analysed the existing glacier records in the Cordillera Blanca since the last glacial maximum to understand the evolution of glaciers in this region over a few centuries. There was a rise in the snowline altitude of glaciers in this region since the late 1990s with a few small glacier advances. Historical to the present El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) records were also analysed to understand whether there was a teleconnection between the glacier fluctuations in the region and the phase changes of ENSO and PDO. We also assessed the variations in three important climatic parameters that influence the glacier retreat—temperature, precipitation, and relative humidity—over a few decades. We calculated the anomalies as well as the seasonal changes in these variables since the mid-twentieth century. There was an increase in temperature during this period, and the decrease in precipitation was not so prominent compared with the temperature rise. There was an exceptionally higher increase in relative humidity since the early 2000s, which is relatively higher than that expected due to the observed rate of warming, and this increase in humidity is believed to be the reason behind the unprecedented rise in the snowline altitudes since the beginning of the twenty-first century. © 2016 Springer-Verlag Wien Source

Discover hidden collaborations