Time filter

Source Type

Thessaloníki, Greece

Kampranis S.C.,University of Crete | Makris A.M.,Institute of Applied Biosciences
Computational and Structural Biotechnology Journal | Year: 2012

Technological developments over the past century have made microbes the work-horses of large scale industrial production processes. Current efforts focus on the metabolic engineering of microbial strains to produce high levels of desirable end-products. The arsenal of the contemporary metabolic engineer contains tools that allow either targeted rational interventions or global screens that combine classical approaches with -omics technologies. Production of terpenoids in S. cerevisiae presents a characteristic example of contemporary biotechnology that integrates all the variety of novel approaches used in metabolic engineering. Terpenoids have attracted significant interest as pharmaceuticals, flavour and fragrance additives, and, more recently, biofuels. The ongoing metabolic engineering efforts, combined with the continuously increasing number of terpene biosynthetic enzymes discovered will enable the economical and environmentally friendly production of a wide range of compounds. © 2012 Bernstein and Carlson.

Bergh A.-C.,Linkoping University | Evaldsson C.,Linkoping University | Pedersen L.B.,Rigshospitalet | Geisler C.,Rigshospitalet | And 5 more authors.
Haematologica | Year: 2014

Chronic lymphocytic leukemia B cells express auto/xeno antigen-reactive antibodies that bind to self-epitopes and resemble natural IgM antibodies in their repertoire. One of the antigenic structures recognized is oxidation induced malonedialdehyde that is present on low-density lipoprotein, apoptotic blebs, and on certain microbes. The poor-prognostic stereotyped subset #1 (Clan I IGHV genes-IGKV1(D)-39) express IgM B-cell receptors that bind oxidized low-density lipoprotein. In this study, we have used for the first time this authentic cognate antigen for analysis of downstream B-cell receptor-signal transduction events, since it is more faithful to B-cell physiology than anti-IgM. Multivalent oxidized low-density lipoprotein showed specific binding to subset #1 IgM/IgD B-cell receptors, whereas native low-density lipoprotein did not. The antigen binding induced prompt receptor clustering followed by internalization. However, the receptor-signal transduction was silenced, revealing no Ca2+ mobilization or cell-cycle entry, while phosphorylated extracellular-regulated kinase 1/2 basal levels were high and could not be elevated further by oxidized low-density lipoprotein. Interestingly, B-cell receptor responsiveness was recovered after 48-h culture in the absence of antigen in half of the cases. Toll-like receptor 9-ligand was found to breach the B-cell receptor-signaling incompetence in 5 of 12 cases pointing to intra-subset heterogeneity. Altogether, this study supports B-cell receptor unresponsiveness to cognate self-antigen on its own in poor-prognostic subset #1 chronic lymphocytic leukemia, indicating that these cells proliferate by other mechanisms that may override B-cell receptor silencing brought about in a context of self-tolerance/anergy. These novel findings have implications for the understanding of chronic lymphocytic leukemia pathobiology and therapy. © 2014 Ferrata Storti Foundation.

Agathangelidis A.,San Raffaele Scientific Institute | Vardi A.,HCT Unit | Baliakas P.,Uppsala University | Stamatopoulos K.,HCT Unit | And 2 more authors.
Leukemia and Lymphoma | Year: 2014

Over the last decade, immunogenetic analysis of B-cell receptor immunoglobulins (BcR IGs) has proved to be a particularly fruitful field in chronic lymphocytic leukemia (CLL), not only for understanding disease pathogenesis but also for discriminating clinical subgroups with markedly distinct course and outcome. Of utmost importance was the identification of quasi-identical BcR IGs among unrelated patients with CLL, fittingly coined as "stereotypy," that set the wheels in motion for unraveling the role of antigen(s) in the selection and expansion of the leukemic clones. The categorization of CLL clones into "subsets" according to shared BcR IG structural characteristics provided a compartmentalized view of this otherwise heterogeneous disease, which eventually led to defining strikingly homogeneous groups of patients in terms of: (i) functional properties of the clonal BcR IGs, e.g. BcR reactivity and signaling; (ii) clonal genetic landscape, e.g. genomic aberrations, gene expression/methylation profiles, microRNA signatures; and (iii) clinical course and outcome. The remarkable restriction of the CLL IG gene repertoire, resulting to a great degree from the high impact of BcR IG stereotypy, may also prompt speculations regarding CLL ontogenesis. Overall, the BcR IG molecule justifiably lies at the heart of CLL clinical research, holding the promise of subset-tailored therapies. © 2014 Informa UK, Ltd.

Chronopoulou E.,Agricultural University of Athens | Madesis P.,Institute of Applied Biosciences | Tsaftaris A.,Institute of Applied Biosciences | Tsaftaris A.,Aristotle University of Thessaloniki | Labrou N.E.,Agricultural University of Athens
Applied Biochemistry and Biotechnology | Year: 2014

Glutathione transferases (GSTs, EC are ubiquitous proteins in plants that play important roles in stress tolerance and in the detoxification of toxic chemicals and metabolites. In this study, we systematically examined the catalytic diversification of a GST isoenzyme from Phaseolus vulgaris (PvGST) which is induced under biotic stress treatment (Uromyces appendiculatus infection). The full-length cDNA of this GST isoenzyme (termed PvGSTU3-3) with complete open reading frame, was isolated using RACE-RT and showed that the deduced amino acid sequence shares high homology with the tau class plant GSTs. PvGSTU3-3 catalyzes several different reactions and exhibits wide substrate specificity. Of particular importance is the finding that the enzyme shows high antioxidant catalytic function and acts as hydroperoxidase, thioltransferase, and dehydroascorbate reductase. In addition, its K m for GSH is about five to ten times lower compared to other plant GSTs, suggesting that PvGSTU3-3 is able to perform efficient catalysis under conditions where the concentration of reduced glutathione is low (e.g.; oxidative stress). Its ability to conjugate GSH with isothiocyanates may provide an additional role for this enzyme to act as a regulator of the released isothiocyanates from glucosinolates as a response of biotic stress. Molecular modeling showed that PvGSTU3-3 shares the same overall fold and structural organization with other plant cytosolic GSTs, with major differences at their hydrophobic binding sites (H-sites) and some differences at the level of C-terminal domain and the linker between the C- and N-terminal domains. PvGSTU3-3, in general, exhibits restricted ability to bind xenobiotics in a nonsubstrate manner, suggesting that the biological role of PvGSTU3-3, is restricted mainly to the catalytic function. Our findings highlight the functional and catalytic diversity of plant GSTs and demonstrate their pivotal role for addressing biotic stresses in Phaseolus vulgaris. © 2013 Springer Science+Business Media New York.

Hilioti Z.,Institute of Applied Biosciences | Ganopoulos I.,Institute of Applied Biosciences | Ganopoulos I.,Aristotle University of Thessaloniki | Bossis I.,Institute of Applied Biosciences | And 3 more authors.
Gene | Year: 2014

Transcription factor function is crucial for eukaryotic systems. The presence of transcription factor families in genomes represents a significant technical challenge for functional studies. To understand their function, we must understand how they evolved and maintained by organisms. Based on genome scale searches for homologs of LEAFY COTYLEDON-LIKE (L1L; AtNF-YB6), NF-YB transcription factor, we report the discovery and annotation of a complete repertoire of thirteen novel genes that belong to the L1L paralogous gene family of Solanum lycopersicum. Gene duplication events within the species resulted in the expansion of the L1L family. Sequence and structure-based phylogenetic analyses revealed two distinct groups of L1Ls in tomato. Natural selection appears to have contributed to the asymmetric evolution of paralogs. Our results point to key differences among SlL1L paralogs in the presence of motifs, structural features, cysteine composition and expression patterns during plant and fruit development. Furthermore, differences in the binding domains of L1L members suggest that some of them evolved new binding specificities. These results reveal dramatic functional diversification of L1L paralogs for their maintenance in tomato genome. Our comprehensive insights on tomato L1L family should provide the basis for further functional and genetic experimentation. © 2014 Elsevier B.V.

Discover hidden collaborations