Time filter

Source Type

Benito X.,Institute of Agriculture and Food Research and Technology | Benito X.,Rovira i Virgili University | Trobajo R.,Institute of Agriculture and Food Research and Technology | Ibanez C.,Institute of Agriculture and Food Research and Technology | And 3 more authors.
Marine Pollution Bulletin | Year: 2016

Present-day habitats of the Ebro Delta, NE Iberian Peninsula, have been ecologically altered as a consequence of intensive human impacts in the last two centuries (especially rice farming). Benthic foraminiferal palaeoassemblages and sediment characteristics of five short cores were used to reconstruct past wetland habitats, through application of multivariate DCA and CONISS techniques, and dissimilarity coefficients (SCD). The timing of environmental changes was compared to known natural and anthropogenic events in order to identify their possible relationships. In deltaic wetlands under altered hydrological conditions, we found a decrease in species diversity and calcareous-dominated assemblages, and a significant positive correlation between microfaunal changes and organic matter content. Modern analogues supported palaeoenvironmental interpretation of the recent evolution of the Delta wetlands. This research provides the first recent reconstruction of change in the Ebro Delta wetlands, and also illustrates the importance of benthic foraminifera for biomonitoring present and future conditions in Mediterranean deltas. © 2015 Elsevier Ltd.


Benito X.,Institute of Agriculture and Food Research and Technology | Benito X.,Rovira i Virgili University | Trobajo R.,Institute of Agriculture and Food Research and Technology | Ibanez C.,Institute of Agriculture and Food Research and Technology
Journal of Paleolimnology | Year: 2015

The contemporary distribution of benthic diatoms and their use as ecological indicators were examined in a coastal wetland, the Ebro Delta, as a representative of environmental conditions in Mediterranean coastal wetlands. A total of 424 diatom taxa were identified across 24 sites encompassing a wide range of wetland habitat types (coastal lagoons, salt and brackish marshes, shallow bays, microbial mats and nearshore marine waters) and conductivities. Canonical correspondence analysis showed that water conductivity and water depth were the main factors structuring the diatom assemblages. Cluster analysis identified five habitat types according to the similarity in diatom species composition: salt marshes, brackish marshes, brackish coastal lagoons and bays, coastal lagoons with fresher conditions, and nearshore open sea. For each wetland habitat, diatom indicator species were identified. Partial canonical correspondence analysis showed that water conductivity, a proxy for salinity, was the most statistically significant and independent variable for explaining the distribution of benthic diatoms in the study area. A transfer function, using a weighted average regression model, was developed for conductivity and displayed reasonable performance (r2 = 0.64; RMSEP = 0.302 log10 mS/cm). Our study in the Ebro Delta provides a basis for using diatom assemblages to make quantitative conductivity inferences, and for using diatom indicator species to identify wetland habitats. These approaches are complementary and may be valuable for paleoenvironmental studies of (1) effects of large-scale, natural changes in the Delta (e.g. sea-level fluctuations), and (2) impacts of short-term anthropogenic changes, such as the introduction and development of rice agriculture. © 2015, Springer Science+Business Media Dordrecht.


Rimet F.,French National Institute for Agricultural Research | Trobajo R.,Institute of Agriculture and Food Research and Technology | Mann D.,Royal Botanic Garden Edinburgh | Kermarrec L.,Asconit Consultants | And 3 more authors.
Protist | Year: 2014

DNA barcoding, being developed for biomonitoring, requires a database of reference sequences and knowledge of how much sequences can deviate before they are assigned to separate species. The molecular hunt for hidden species also raises the question of species definitions. We examined whether there are objective criteria for sequence-based species delimitation in diatoms, using Nitzschia palea, an important monophyletic indicator species already known to contain cryptic diversity. Strains from a wide geographical range were sequenced for 28S rRNA, COI and rbcL. Homogeneity indices and the Chao index failed to objectively select a precise number of species existing in N. palea as well as an evolutionary method based on coalescence theory. COI always gave higher diversity estimations than 28S rRNA or rbcL. Mating data did not provide a precise calibration of molecular species thresholds. Rarefaction curves indicated that further MOTUs would be detected with more isolates than we sampled (81 clones, 42 localities). Although some genotypes had intercontinental distributions, there was a positive relationship between genetic and geographical distance, suggesting even higher richness than we assessed, given that many regions were not sampled. Overall, no objective criteria were found for species separation; instead barcoding will need a consensual approach to molecular species limits. © 2014 Elsevier GmbH.


Benito X.,Institute of Agriculture and Food Research and Technology | Trobajo R.,Institute of Agriculture and Food Research and Technology | Ibanez C.,Institute of Agriculture and Food Research and Technology | Cearreta A.,University of the Basque Country | Brunet M.,Rovira i Virgili University
Marine pollution bulletin | Year: 2015

Present-day habitats of the Ebro Delta, NE Iberian Peninsula, have been ecologically altered as a consequence of intensive human impacts in the last two centuries (especially rice farming). Benthic foraminiferal palaeoassemblages and sediment characteristics of five short cores were used to reconstruct past wetland habitats, through application of multivariate DCA and CONISS techniques, and dissimilarity coefficients (SCD). The timing of environmental changes was compared to known natural and anthropogenic events in order to identify their possible relationships. In deltaic wetlands under altered hydrological conditions, we found a decrease in species diversity and calcareous-dominated assemblages, and a significant positive correlation between microfaunal changes and organic matter content. Modern analogues supported palaeoenvironmental interpretation of the recent evolution of the Delta wetlands. This research provides the first recent reconstruction of change in the Ebro Delta wetlands, and also illustrates the importance of benthic foraminifera for biomonitoring present and future conditions in Mediterranean deltas. Copyright © 2015 Elsevier Ltd. All rights reserved.


Itoiz E.S.,Institute of Agriculture and Food Research and Technology | Fantke P.,University of Stuttgart | Juraske R.,ETH Zurich | Kounina A.,Ecole Polytechnique Federale de Lausanne | Vallejo A.A.,Institute of Agriculture and Food Research and Technology
Chemosphere | Year: 2012

Lettuce greenhouse experiments were carried out from March to June 2011 in order to analyze how pesticides behave from the time of application until their intake via human consumption taking into account the primary distribution of pesticides, field dissipation, and post-harvest processing. In addition, experimental conditions were used to evaluate a new dynamic plant uptake model comparing its results with the experimentally derived residues. One application of imidacloprid and two of azoxystrobin were conducted. For evaluating primary pesticide distribution, two approaches based on leaf area index and vegetation cover were used and results were compared with those obtained from a tracer test. High influence of lettuce density, growth stage and type of sprayer was observed in primary distribution showing that low densities or early growth stages implied high losses of pesticides on soil. Washed and unwashed samples of lettuce were taken and analyzed from application to harvest to evaluate removal of pesticides by food processing. Results show that residues found on the Spanish preharvest interval days were in all cases below officially set maximum residue limits, although it was observed that time between application and harvest is as important for residues as application amounts. An overall reduction of 40-60% of pesticides residues was obtained from washing lettuce. Experimentally derived residues were compared with modeled residues and deviate from 1.2 to 1.4 for imidacloprid and azoxystrobin, respectively, presenting good model predictions. Resulting human intake fractions range from 0.045kgintakekgapplied-1 for imidacloprid to 0.14kgintakekgapplied-1 for azoxystrobin. © 2012 Elsevier Ltd.


Benito X.,University of Nebraska - Lincoln | Benito X.,Institute of Agriculture and Food Research and Technology | Trobajo R.,Institute of Agriculture and Food Research and Technology | Cearreta A.,University of the Basque Country | Ibanez C.,Institute of Agriculture and Food Research and Technology
Estuarine, Coastal and Shelf Science | Year: 2016

The ecology and modern distribution of benthic foraminiferal assemblages were analysed in the Ebro Delta (NW Mediterranean Sea). Foraminiferal distributions were from 191 sediment surface samples covering a wide range of deltaic habitats and adjacent open sea areas. According to similarity in species composition, cluster analysis identified four habitat types: (1) offshore habitat, (2) nearshore and outer bays, (3) salt and brackish marshes and (4) coastal lagoons and inner bays. Canonical Correspondence Analysis identified water depth, salinity and sand content as the main environmental factors structuring living foraminiferal assemblages. Partial Canonical Correspondence Analysis revealed water depth as the most statistically significant associated with the distribution of modern foraminifera in the Ebro Delta. Thus, a transfer function for water depth using Weighted Average Partial Least Squares regression was successfully developed. Although depth per se is unlikely to affect the foraminifera directly but will exert its effects via various environmental variables that co-vary with depth in the deltaic habitats (e.g. hydrodynamics, oxygen, food availability, etc), the resulting model (r2 = 0.89; RMSEP = 0.32 log10 m) suggested a strong correlation between observed and foraminifera-predicted water depths, and therefore provided a potentially useful tool for water-depth reconstructions in the Ebro Delta. This work indicated the potential role of modern foraminifera as quantitative indicators of water depth and habitat types in the Ebro Delta. This complementary approach (transfer function and indicator species) will allow reconstruction of the palaeoenvironmental changes that have occurred in the Ebro Delta based on the benthic foraminiferal record. © 2016 Elsevier Ltd


Fantke P.,University of Stuttgart | Wieland P.,University of Stuttgart | Wieland P.,Robert Bosch GmbH | Juraske R.,ETH Zurich | And 5 more authors.
Environmental Science and Technology | Year: 2012

An approach for estimating human exposure to pesticides via consumption of six important food crops is presented that can be used to extend multimedia models applied in health risk and life cycle impact assessment. We first assessed the variation of model output (pesticide residues per kg applied) as a function of model input variables (substance, crop, and environmental properties) including their possible correlations using matrix algebra. We identified five key parameters responsible for between 80% and 93% of the variation in pesticide residues, namely time between substance application and crop harvest, degradation half-lives in crops and on crop surfaces, overall residence times in soil, and substance molecular weight. Partition coefficients also play an important role for fruit trees and tomato (Kow), potato (Koc), and lettuce (Kaw, Kow). Focusing on these parameters, we develop crop-specific models by parametrizing a complex fate and exposure assessment framework. The parametric models thereby reflect the framework's physical and chemical mechanisms and predict pesticide residues in harvest using linear combinations of crop, crop surface, and soil compartments. Parametric model results correspond well with results from the complex framework for 1540 substance-crop combinations with total deviations between a factor 4 (potato) and a factor 66 (lettuce). Predicted residues also correspond well with experimental data previously used to evaluate the complex framework. Pesticide mass in harvest can finally be combined with reduction factors accounting for food processing to estimate human exposure from crop consumption. All parametric models can be easily implemented into existing assessment frameworks. © 2012 American Chemical Society.


Fantke P.,University of Stuttgart | Juraske R.,ETH Zurich | Anton A.,Institute of Agriculture and Food Research and Technology | Friedrich R.,University of Stuttgart | And 2 more authors.
Environmental Science and Technology | Year: 2011

A new dynamic plant uptake model is presented to characterize health impacts of pesticides applied to food crops, based on a flexible set of interconnected compartments. We assess six crops covering a large fraction of the worldwide consumption. Model estimates correspond well with observed pesticide residues for 12 substance-crop combinations, showing residual errors between a factor 1.5 and 19. Human intake fractions, effect and characterization factors are provided for use in life cycle impact assessment for 726 substance-crop combinations and different application times. Intake fractions typically range from 10 -2 to 10 -8 kg intake kgapplied-1. Human health impacts vary up to 9 orders of magnitude between crops and 10 orders of magnitude between pesticides, stressing the importance of considering interactions between specific crop-environments and pesticides. Time between application and harvest, degradation half-life in plants and residence time in soil are driving the evolution of pesticide masses. We demonstrate that toxicity potentials can be reduced up to 99% by defining adequate pesticide substitutions. Overall, leafy vegetables only contribute to 2% of the vegetal consumption, but due to later application times and higher intake fractions may nevertheless lead to impacts comparable or even higher than via the larger amount of ingested cereals. © 2011 American Chemical Society.


PubMed | Anglia, Rovira i Virgili University, University of the Basque Country and Institute of Agriculture and Food Research and Technology
Type: Journal Article | Journal: Marine pollution bulletin | Year: 2015

Present-day habitats of the Ebro Delta, NE Iberian Peninsula, have been ecologically altered as a consequence of intensive human impacts in the last two centuries (especially rice farming). Benthic foraminiferal palaeoassemblages and sediment characteristics of five short cores were used to reconstruct past wetland habitats, through application of multivariate DCA and CONISS techniques, and dissimilarity coefficients (SCD). The timing of environmental changes was compared to known natural and anthropogenic events in order to identify their possible relationships. In deltaic wetlands under altered hydrological conditions, we found a decrease in species diversity and calcareous-dominated assemblages, and a significant positive correlation between microfaunal changes and organic matter content. Modern analogues supported palaeoenvironmental interpretation of the recent evolution of the Delta wetlands. This research provides the first recent reconstruction of change in the Ebro Delta wetlands, and also illustrates the importance of benthic foraminifera for biomonitoring present and future conditions in Mediterranean deltas.


PubMed | Institute of Agriculture and Food Research and Technology
Type: Journal Article | Journal: Chemosphere | Year: 2012

Lettuce greenhouse experiments were carried out from March to June 2011 in order to analyze how pesticides behave from the time of application until their intake via human consumption taking into account the primary distribution of pesticides, field dissipation, and post-harvest processing. In addition, experimental conditions were used to evaluate a new dynamic plant uptake model comparing its results with the experimentally derived residues. One application of imidacloprid and two of azoxystrobin were conducted. For evaluating primary pesticide distribution, two approaches based on leaf area index and vegetation cover were used and results were compared with those obtained from a tracer test. High influence of lettuce density, growth stage and type of sprayer was observed in primary distribution showing that low densities or early growth stages implied high losses of pesticides on soil. Washed and unwashed samples of lettuce were taken and analyzed from application to harvest to evaluate removal of pesticides by food processing. Results show that residues found on the Spanish preharvest interval days were in all cases below officially set maximum residue limits, although it was observed that time between application and harvest is as important for residues as application amounts. An overall reduction of 40-60% of pesticides residues was obtained from washing lettuce. Experimentally derived residues were compared with modeled residues and deviate from 1.2 to 1.4 for imidacloprid and azoxystrobin, respectively, presenting good model predictions. Resulting human intake fractions range from 0.045 kg(intake) kg(applied)(-1) for imidacloprid to 0.14 kg(intake) kg(applied)(-1) for azoxystrobin.

Loading Institute of Agriculture and Food Research and Technology collaborators
Loading Institute of Agriculture and Food Research and Technology collaborators