Time filter

Source Type

Hwang S.,Korea Institute of Science and Technology | Kim S.M.,Institute of Advanced Composite Materials | Bak S.-M.,Brookhaven National Laboratory | Chung K.Y.,Korea Institute of Science and Technology | Chang W.,Korea Institute of Science and Technology
Chemistry of Materials | Year: 2015

In this work, we investigate the structural modifications occurring at the bulk, subsurface, and surface scales of LixNiyMnzCo1-y-zO2 (NMC; y, z = 0.8, 0.1 and 0.4, 0.3, respectively) cathode materials during the initial charge/discharge. Various analytical tools, such as X-ray diffraction, selected-area electron diffraction, electron energy-loss spectroscopy, and high-resolution electron microscopy, are used to examine the structural properties of the NMC cathode materials at the three different scales. Cutoff voltages of 4.3 and 4.8 V are applied during the electrochemical tests as the normal and extreme conditions, respectively. The high-Ni content NMC cathode materials exhibit unusual behaviors, which deviate from the general redox reactions during the charge or discharge. The transition metal (TM) ions in the high-Ni content NMC cathode materials, which are mostly Ni ions, are reduced at 4.8 V, even though TMs are usually oxidized to maintain charge neutrality upon the removal of Li. It was found that any changes in the crystallographic and electronic structures are mostly reversible down to the subsurface scale, despite the unexpected reduction of Ni ions. However, after the discharge, traces of the phase transitions remain at the edges of the NMC cathode materials at the scale of a few nanometers (i.e., surface scale). This study demonstrates that the structural modifications in NMC cathode materials are induced by charge as well as discharge, at multiple length scales. These changes are nearly reversible after the first cycle, except at the edges of the samples, which should be avoided because these highly localized changes can initiate battery degradation. © 2015 American Chemical Society.

Hwang S.,KAIST | Hwang S.,Korea Institute of Science and Technology | Kim S.M.,Institute of Advanced Composite Materials | Bak S.-M.,Brookhaven National Laboratory | And 6 more authors.
Chemistry of Materials | Year: 2015

In this work, we use in situ transmission electron microscopy (TEM) to investigate the thermal decomposition that occurs at the surface of charged LixNiyMnzCo1-y-zO2 (NMC) cathode materials of different composition (with y, z = 0.8, 0.1, and 0.6, 0.2, and 0.4,and 0.3), after they have been charged to their practical upper limit voltage (4.3 V). By heating these materials inside the TEM, we are able to directly characterize near surface changes in both their electronic structure (using electron energy loss spectroscopy) and crystal structure and morphology (using electron diffraction and bright-field imaging). The most Ni-rich material (y, z = 0.8, 0.1) is found to be thermally unstable at significantly lower temperatures than the other compositions - this is manifested by changes in both the electronic structure and the onset of phase transitions at temperatures as low as 100°C. Electron energy loss spectroscopy indicates that (i) the thermally induced reduction of Ni ions drives these changes, and (ii) this is exacerbated by the presence of an additional redox reaction that occurs at 4.2 V in the y, z = 0.8, 0.1 material. Exploration of individual particles shows that there are substantial variations in the onset temperatures and overall extent of these changes. Of the compositions studied, the composition of y, z = 0.6, 0.2 has the optimal combination of high energy density and reasonable thermal stability. The observations herein demonstrate that real-time electron microscopy provide direct insight into the changes that occur in cathode materials with temperature, allowing optimization of different alloy concentrations to maximize overall performance. © 2015 American Chemical Society.

Hwang S.,Korea Institute of Science and Technology | Kim S.Y.,Korea Institute of Science and Technology | Chung K.Y.,Korea Institute of Science and Technology | Stach E.A.,Brookhaven National Laboratory | And 2 more authors.
APL Materials | Year: 2016

We take advantage of scanning transmission electron microscopy and electron energy loss spectroscopy to investigate the changes in near-surface electronic structure and quantify the degree of local degradation of Ni-based cathode materials with the layered structure (LiNi0.8Mn0.1Co0.1O2 and LiNi0.4Mn0.3Co0.3O2) after 20 cycles of delithiation and lithiation. Reduction of transition metals occurs in the near-surface region of cathode materials: Mn is the major element to be reduced in the case of relatively Mn-rich composition, while reduction of Ni ions is dominant in Ni-rich materials. The valences of Ni and Mn ions are complementary, i.e., when one is reduced, the other is oxidized in order to maintain charge neutrality. The depth of degradation zone is found to be much deeper in Ni-rich materials. This comparative analysis provides important insights needed for the devising of new cathode materials with high capacity as well as long lifetime. © 2016 Author(s).

Choi A.,Seoul National University | Choi A.,Korea University | Kim K.H.,Seoul National University | Hong S.J.,Seoul National University | And 10 more authors.
Physical Review B - Condensed Matter and Materials Physics | Year: 2012

Polymer nanofibers are one-dimensional organic hydrocarbon systems containing conducting polymers where the nonlinear local excitations such as solitons, polarons, and bipolarons formed by the electron-phonon interaction were predicted. Magnetoconductance (MC) can simultaneously probe both the spin and charge of these mobile species and identify the effects of electron-electron interactions on these nonlinear excitations. Here, we report our observations of a qualitatively different MC in polyacetylene (PA) and in polyaniline (PANI) and polythiophene (PT) nanofibers. In PA, the MC is essentially zero, but it is present in PANI and PT. The universal scaling behavior and the zero (finite) MC in PA (PANI and PT) nanofibers provide evidence of Coulomb interactions between spinless charged solitons (interacting polarons which carry both spin and charge). © 2012 American Physical Society.

Kim Y.-K.,University of Massachusetts Amherst | Kim Y.-K.,Institute of Advanced Composite Materials | Landis R.F.,University of Massachusetts Amherst | Huo S.,University of Massachusetts Amherst | And 4 more authors.
RSC Advances | Year: 2016

We present a facile synthetic strategy for large cationic gold nanoparticles by utilizing a cationic thiol ligand as a stabilizer for seed-mediated growth. The size and surface plasmon resonance property of the gold nanoparticles were successfully controlled with this strategy. © 2016 The Royal Society of Chemistry.

Rani A.,Korea Institute of Science and Technology | Rani A.,Korean University of Science and Technology | Oh K.A.,Korea Institute of Science and Technology | Koo H.,Institute of Advanced Composite Materials | And 2 more authors.
Applied Surface Science | Year: 2011

Extremely thin sheets of carbon atoms called graphene have been predicted to possess excellent thermal properties, electrical conductivity, and mechanical stiffness. To harness such properties in composite materials for multifunctional applications, one would require the incorporation of graphene. In this study, new thin film composites were created using layer-by-layer (LBL) assembly of polymer-coated graphitic nanoplatelets. The positive and negative polyelectrolytes used to cover graphene sheets were poly allylamine hydrochloride (PAH) and poly sodium 4-styrenesulfonate (PSS). The synthesized poly allylamine hydrochloride-graphene (PAH-G) and poly sodium 4-styrenesulfonate-gaphene (PSS-G) were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and thermo gravimetric analysis (TGA). The multilayer films created by spontaneous sequential adsorption of PAH-G and PSS-G were characterized by ultra violet spectroscopy (UV-vis), scanning electron microscopy (SEM), and AFM. The electrical conductivity of the graphene/polyelectrolyte multilayer film composites measured by the four-point probe method was 0.2 S cm-1, which was sufficient for the construction of advanced electro-optical devices and sensors. © 2010 Elsevier B.V. All rights reserved.

Loading Institute of Advanced Composite Materials collaborators
Loading Institute of Advanced Composite Materials collaborators