Time filter

Source Type

Thauvin-Robinet C.,University of Burgundy | Auclair M.,Institute National Of La Sante Et Of La Recherche Medicale Unite Mixte Of Recherche S938 | Auclair M.,University Pierre and Marie Curie | Auclair M.,Institut Universitaire de France | And 36 more authors.
American Journal of Human Genetics | Year: 2013

Short stature, hyperextensibility of joints and/or inguinal hernia, ocular depression, Rieger anomaly, and teething delay (SHORT) syndrome is a developmental disorder with an unknown genetic cause and hallmarks that include insulin resistance and lack of subcutaneous fat. We ascertained two unrelated individuals with SHORT syndrome, hypothesized that the observed phenotype was most likely due to de novo mutations in the same gene, and performed whole-exome sequencing in the two probands and their unaffected parents. We then confirmed our initial observations in four other subjects with SHORT syndrome from three families, as well as 14 unrelated subjects presenting with syndromic insulin resistance and/or generalized lipoatrophy associated with dysmorphic features and growth retardation. Overall, we identified in nine affected individuals from eight families de novo or inherited PIK3R1 mutations, including a mutational hotspot (c.1945C>T [p.Arg649Trp]) present in four families. PIK3R1 encodes the p85α, p55α, and p50α regulatory subunits of class IA phosphatidylinositol 3 kinases (PI3Ks), which are known to play a key role in insulin signaling. Functional data from fibroblasts derived from individuals with PIK3R1 mutations showed severe insulin resistance for both proximal and distal PI3K-dependent signaling. Our findings extend the genetic causes of severe insulin-resistance syndromes and provide important information with respect to the function of PIK3R1 in normal development and its role in human diseases, including growth delay, Rieger anomaly and other ocular affections, insulin resistance, diabetes, paucity of fat, and ovarian cysts. © 2013 The American Society of Human Genetics.

PubMed | Institute National Of La Sante Et Of La Recherche Medicale Unite Mixte Of Recherche S938
Type: Journal Article | Journal: The Journal of clinical endocrinology and metabolism | Year: 2011

Mutations in LMNA, encoding A-type lamins, lead to multiple laminopathies, including lipodystrophies, progeroid syndromes, and cardiomyopathies. Alterations in the prelamin-A posttranslational maturation, resulting in accumulation of farnesylated isoforms, cause human progeroid syndromes. Accumulation of mutant nonfarnesylated prelamin-A leads to cardiomyopathy or progeria in mice, but no data have been provided in humans. OBJECTIVE, DESIGN, SETTING, AND PATIENTS: We searched for LMNA mutations in seven women originating from Reunion Island who were referred for a severe lipodystrophic syndrome. Clinical, molecular, genealogical, and cellular studies were performed in probands and relatives.The seven probands showed a severe partial lipodystrophic syndrome with diabetes and/or acanthosis nigricans, liver steatosis, hypertriglyceridemia, and low serum leptin and adiponectin levels. Three probands also had severe cardiac rhythm and conduction disturbances. We identified in all probands a homozygous LMNA p.T655fsX49 mutation leading to expression of a mutated prelamin-A with 48 aberrant C-terminal amino acids, preventing its physiological posttranslational farnesylation and maturation. Genealogical and haplotype analyses were consistent with a founder mutation transmitted from a common ancestor in the 17th century. In probands cultured fibroblasts, mutated prelamin-A was associated with typical laminopathic nuclear dysmorphies, increased oxidative stress, and premature senescence. Heterozygous relatives were asymptomatic or partially affected, in favor of a codominant transmission of the disease with incomplete penetrance in heterozygotes.We reveal that a homozygous mutation of prelamin-A preventing its farnesylation leads to a severe lipodystrophic laminopathy in humans, which can be associated with cardiac conduction disturbances, stressing the pathogenicity of nonfarnesylated prelamin-A in human laminopathies.

Loading Institute National Of La Sante Et Of La Recherche Medicale Unite Mixte Of Recherche S938 collaborators
Loading Institute National Of La Sante Et Of La Recherche Medicale Unite Mixte Of Recherche S938 collaborators