Time filter

Source Type

Carrillo J.,Institute Investigaciones Biomedicas Of Madrid | Carrillo J.,CIBER ISCIII | Martinez P.,CIBER ISCIII | Martinez P.,Hospital Universitario La Paz | And 21 more authors.
Blood Cells, Molecules, and Diseases | Year: 2012

Dyskeratosis congenita (DC) is a rare inherited bone-marrow failure syndrome with high clinical heterogeneity. Cells derived from DC patients present short telomeres at early ages, as a result of mutations in genes encoding components of the telomerase complex (DKC1, TERC, TERT, NHP2 and NOP10), or the shelterin complex (TINF2). However, mutations have been identified only in around 50% of the cases, indicating that other genes could be involved in the development of this disease. Indeed, mutations in TCBA1 or chromosome segment C16orf57 have been described recently. We have used HRM technology to perform genetic analysis in the above mentioned genes, in Spanish patients showing both, some clinical features of DC and short telomeres. The mutations have been identified by PCR amplification of DC genes followed by high resolution melting (HRM) and direct DNA sequencing analysis. We have identified seven new families with DC, three with X-linked DC and four with autosomal dominant DC, in which we have found two novel mutations in DKC1 (p.His68Arg and p.Lys390del) and four novel mutations in TERT gene (p.Pro530Leu, p.Arg698Trp, p.Arg971His and p.Arg698Gln). The results show that the use of HRM analysis enables a rapid and inexpensive identification of mutations in dyskeratosis congenita associated genes. © 2012 Elsevier Inc..

PubMed | Institute Investigaciones Biomedicas Of Madrid
Type: Journal Article | Journal: Human molecular genetics | Year: 2012

Hedgehog (Hh) signaling is involved in patterning and morphogenesis of most organs in the developing mammalian embryo. Despite many advances in understanding core components of the pathway, little is known about how the activity of the Hh pathway is adjusted in organ- and tissue-specific developmental processes. Mutations in EVC or EVC2 disrupt Hh signaling in tooth and bone development. Using mouse models, we show here that Evc and Evc2 are mutually required for localizing to primary cilia and also for maintaining their normal protein levels. Consistent with Evc and Evc2 functioning as a complex, the skeletal phenotypes in either single or double homozygous mutant mice are virtually indistinguishable. Smo translocation to the cilium was normal in Evc2-deficient chondrocytes following Hh activation with the Smo-agonist SAG. However, Gli3 recruitment to cilia tips was reduced and Sufu/Gli3 dissociation was impaired. Interestingly, we found Smo to co-precipitate with Evc/Evc2, indicating that in some cells Hh signaling requires direct interaction of Smo with the Evc/Evc2 complex. Expression of a dominantly acting Evc2 mutation previously identified in Weyers acrodental dysostosis (Evc243) caused mislocalization of Evc/Evc243 within the cilium and also reproduced the Gli3-related molecular defects observed in Evc2(-/-) chondrocytes. Moreover, Evc silencing in Sufu(-/-) cells attenuated the output of the Hh pathway, suggesting that Evc/Evc2 also promote Hh signaling in the absence of Sufu. Together our data reveal that the Hh pathway involves Evc/Evc2-dependent modulations that are necessary for normal endochondral bone formation.

Loading Institute Investigaciones Biomedicas Of Madrid collaborators
Loading Institute Investigaciones Biomedicas Of Madrid collaborators