Time filter

Source Type

Redondo M.,Polytechnic University of Valencia | Zarruk J.G.,Complutense University of Madrid | Ceballos P.,Polytechnic University of Valencia | Perez D.I.,Polytechnic University of Valencia | And 10 more authors.
European Journal of Medicinal Chemistry | Year: 2012

A simple and efficient synthetic method for the preparation of quinazoline type phosphodiesterase 7 (PDE7) inhibitors, based on microwave irradiation, has been developed. The use of this methodology improved yields and reaction times, providing a scalable procedure. These compounds are pharmacologically interesting because of their in vivo efficacy both in spinal cord injury and Parkinson's disease models, as shown in previous studies from our group. Herein we describe for the first time that administration of one of the PDE7 inhibitors here optimized, 3-phenyl-2,4-dithioxo-1,2,3,4-tetrahydroquinazoline (compound 5), ameliorated brain damage and improved behavioral outcome in a permanent middle cerebral artery occlusion (pMCAO) stroke model. Furthermore, we demonstrate that these PDE7 inhibitors are potent anti-inflammatory as well as neuroprotective agents in primary cultures of neural cells. These results led us to propose PDE7 inhibitors as a new class of therapeutic agents for neuroprotection. © 2011 Elsevier Masson SAS. All rights reserved.

Garcia-Palmero I.,Autonomous University of Madrid | Lopez-Larrubia P.,Institute Investigaciones Biomedicas CSIC UAM | Cerdan S.,Institute Investigaciones Biomedicas CSIC UAM | Villalobo A.,Autonomous University of Madrid
NMR in Biomedicine | Year: 2013

Development of neovasculature is a necessary requirement for tumour growth and it provides additional opportunities for therapeutic intervention. However, current antiangiogenic therapies have limited efficacy, mostly because of the development of resistance. Hence, characterization of new antiangiogenic molecular targets is of considerable clinical interest. We report that a calmodulin-binding domain (CaM-BD) deletion mutant of the growth factor receptor bound protein 7 (Grb7) (denoted Grb7Δ) impairs tumour growth and associated angiogenesis in vivo. We implanted glioma C6 cells in rat brains transfected with an enhanced yellow fluorescent protein (EYFP) chimera of Grb7{increment}, its EYFP-Grb7 wild type counterpart, and EYFP alone. We systematically followed intracerebral growth of the tumours, their cellularity and the functional performance of tumour-associated microvasculature using magnetic resonance imaging, including anatomical T1W and T2W images and functional diffusion and perfusion parameters. Tumours grown from implanted C6 cells expressing EYFP-Grb7Δ developed slower, became smaller and presented lower apparent cellularity than those derived from cells expressing EYFP-Grb7 and EYFP. Vascular perfusion measurements within tumours derived from EYFP-Grb7{increment}-expressing cells showed significantly lower cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) values. These findings were independently validated by histological and immunohistochemical techniques. Taken together, these findings confirm that the CaM-BD of Grb7 plays an important role in tumour growth and associated angiogenesis in vivo, thus identifying this region of the protein as a novel target for antiangiogenic treatment. © 2013 John Wiley & Sons, Ltd.

Becuwe M.,University Paris Diderot | Vieira N.,University of Minho | Lara D.,Institute Investigaciones Biomedicas CSIC UAM | Gomes-Rezende J.,University of Minho | And 6 more authors.
Journal of Cell Biology | Year: 2012

Endocytosis regulates the plasma membrane protein landscape in response to environmental cues. In yeast, the endocytosis of transporters depends on their ubiquitylation by the Nedd4-like ubiquitin ligase Rsp5, but how extracellular signals trigger this ubiquitylation is unknown. Various carbon source transporters are known to be ubiquitylated and endocytosed when glucose-starved cells are exposed to glucose. We show that this required the conserved arrestin-related protein Rod1/Art4, which was activated in response to glucose addition. Indeed, Rod1 was a direct target of the glucose signaling pathway composed of the AMPK homologue Snf1 and the PP1 phosphatase Glc7/Reg1. Glucose promoted Rod1 dephosphorylation and its subsequent release from a phospho-dependent interaction with 14-3-3 proteins. Consequently, this allowed Rod1 ubiquitylation by Rsp5, which was a prerequisite for transporter endocytosis. This paper therefore demonstrates that the arrestinrelated protein Rod1 relays glucose signaling to transporter endocytosis and provides the first molecular insights into the nutrient-induced activation of an arrestin-related protein through a switch in post-translational modifications. © 2012 Becuwe et al.

Rodriguez-Centeno J.,Institute Investigaciones Biomedicas CSIC UAM | Sastre L.,Institute Investigaciones Biomedicas CSIC UAM
PLoS ONE | Year: 2016

Amoebae of the Dictyostelium discoideum species form multicellular fruiting bodies upon starvation. Cyclic adenosine monophosphate (cAMP) is used as intercellular signalling molecule in cell-aggregation, cell differentiation and morphogenesis. This molecule is synthesized by three adenylyl cyclases, one of which, ACA, is required for cell aggregation. The gene coding for ACA (acaA) is transcribed from three different promoters that are active at different developmental stages. Promoter 1 is active during cell-aggregation, promoters 2 and 3 are active in prespore and prestalk tip cells at subsequent developmental stages. The biological relevance of acaA expression from each of the promoters has been studied in this article. The acaA gene was expressed in acaA-mutant cells, that do not aggregate, under control of each of the three acaA promoters. acaA expression under promoter 1 control induced cell aggregation although subsequent development was delayed, very small fruiting bodies were formed and cell differentiation genes were expressed at very low levels. Promoter 2-driven acaA expression induced the formation of small aggregates and small fruiting bodies were formed at the same time as in wild-type strains and differentiation genes were also expressed at lower levels. Expression of acaA from promoter 3 induced aggregates and fruiting bodies formation and their size and the expression of differentiation genes were more similar to that of wild-type cells. Expression of acaA from promoters 1 and 2 in AX4 cells also produced smaller structures. In conclusion, the expression of acaA under control of the aggregation-specific Promoter 1 is able to induce cell aggregation in acaA-mutant strains. Expression from promoters 2 and 3 also recovered aggregation and development although promoter 3 induced a more complete recovery of fruiting body formation. © 2016 Rodriguez-Centeno, Sastre.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Lpez-Reyes I.,CINVESTAV | Garcia-Rivera G.,CINVESTAV | Bauelos C.,CINVESTAV | Herranz S.,Institute Investigaciones Biomedicas CSIC UAM | And 4 more authors.
Journal of Biomedicine and Biotechnology | Year: 2010

Eukaryotic endocytosis involves multivesicular bodies formation, which is driven by endosomal sorting complexes required for transport (ESCRT). Here, we showed the presence and expression of homologous ESCRT genes in Entamoeba histolytica. We cloned and expressed the Ehvps4 gene, an ESCRT member, to obtain the recombinant EhVps4 and generate specific antibodies, which immunodetected EhVps4 in cytoplasm of trophozoites. Bioinformatics and biochemical studies evidenced that rEhVps4 is an ATPase, whose activity depends on the conserved E211 residue. Next, we generated trophozoites overexpressing EhVps4 and mutant EhVps4-E211Q FLAG-tagged proteins. The EhVps4-FLAG was located in cytosol and at plasma membrane, whereas the EhVps4-E211Q-FLAG was detected as abundant cytoplasmic dots in trophozoites. Erythrophagocytosis, cytopathic activity, and hepatic damage in hamsters were not improved in trophozoites overexpressing EhVps4-FLAG. In contrast, EhVps4-E211Q-FLAG protein overexpression impaired these properties. The localization of EhVps4-FLAG around ingested erythrocytes, together with our previous results, strengthens the role for EhVps4 in E. histolytica phagocytosis and virulence. Copyright © 2010 Israel Ĺopez-Reyes et al.

Discover hidden collaborations