Entity

Time filter

Source Type


Manzano R.,University of Zaragoza | Toivonen J.M.,University of Zaragoza | Olivan S.,University of Zaragoza | Calvo A.C.,University of Zaragoza | And 5 more authors.
Neurodegenerative Diseases | Year: 2011

Background: In the superoxide dismutase 1 (SOD1)-G93A mouse model of amyotrophic lateral sclerosis (ALS), skeletal muscle is a key target of mutant SOD1 toxicity. However, the expression of factors that control the regenerative potential of the muscle is unknown in this model. Objective: To characterize the expression of satellite cell marker Pax7 and myogenic regulatory factors (MRF) in skeletal muscle of SOD1-G93A mice at different stages of the disease. Methods: The expressions of Pax7, Myod1, Myf5 and myogenin (Myog) were determined by quantitative real-time PCR and by Western blotting from the grouped gastrocnemius, quadriceps and soleus muscles of SOD1-G93A mice at presymptomatic, symptomatic and terminal stages of the disease, and from surgically denervated wild-type gastrocnemius muscles. Results:Pax7 mRNA and MYF5 protein were upregulated in presymptomatic mice, coinciding with increased muscle damage marker Rrad and chemokine Ccl5. All MRF transcripts and most proteins (excluding MYOG) were increased, starting from 3 months of age, simultaneously with increased expression of denervation marker Chrna1. However, in the terminal stage, no protein increase was evident for Pax7 or any of the MRF despite the increased mRNA levels. The transcripts for chemokine Ccl2 and chemokine receptor Cxcr4 were increased starting from the onset of symptoms. Conclusions: The characterization of Pax7 and MRF in SOD1-G93A mice reveals a progressive induction of the myogenic program at the RNA level, but a blunted protein level response at late stages of the disease. Altered posttranscriptional and posttranslational mechanisms likely to operate, as well as the potential role of chemokine signaling in mutant SOD1 muscle, are discussed. Copyright © 2011 S. Karger AG. Source


Martinez-Carmona M.,Institute Investigacion Sanitaria Hospital 12 Of Octubre I12 | Baeza A.,Institute Investigacion Sanitaria Hospital 12 Of Octubre I12 | Rodriguez-Milla M.A.,Institute Salud Carlos III | Garcia-Castro J.,Institute Salud Carlos III | Vallet-Regi M.,Institute Investigacion Sanitaria Hospital 12 Of Octubre I12
Journal of Materials Chemistry B | Year: 2015

A novel phototriggered drug delivery nanocarrier, which exhibits very high tumor cytotoxicity against human tumoral cells, is presented. This device is based on mesoporous silica nanoparticles decorated with a biocompatible protein shell cleavable by light irradiation. The proteins that compose the protein shell (avidin, streptavidin and biotinylated transferrin) act as targeting and capping agents at the same time, avoiding the use of redundant systems. The light responsive behavior is provided by a biotinylated photocleavable cross-linker covalently grafted on the mesoporous surface, which suffers photocleavage by UV radiation (366 nm). Human tumoral cells incubated in the presence of a very low particle concentration enter into the apoptotic stage after a short irradiation time. Thus, the system described here could be applied to the treatment of exposed tumors that affect the skin, oesophagus, and stomach, among others, and are easily accessible for light irradiation. © The Royal Society of Chemistry 2015. Source


Martinez-Gras I.,Complutense University of Madrid | Martinez-Gras I.,Research Center Biomedica En Red Of Salud Mental Cibersam | Martinez-Gras I.,Institute Investigacion Sanitaria Hospital 12 Of Octubre I12 | Perez-Nievas B.G.,Complutense University of Madrid | And 24 more authors.
Schizophrenia Research | Year: 2011

A number of findings suggest that inflammation plays a role in the pathophysiology of schizophrenia. Taking into account a physiological balance between pro- and anti-inflammatory mediators, we measured the plasma levels of cyclooxygenase-derived mediators and other key pro- and anti-inflammatory transcription factors in peripheral blood mononuclear cells (PBMC). Forty healthy subjects and 46 treated chronic schizophrenic patients with an acutely exacerbated condition who met DSM-IV criteria were included. COX by-products prostaglandin E2 (PGE2) and 15d-prostaglandin J2 (15d-PGJ2) plasma levels were measured by EIA. Peroxisome proliferator-activated receptor gamma (PPARγ) as well as nuclear factor kappaB (NFκB) activity in nuclear extracts from PBMC and expression of its inhibitory subunit IκBα in cytosolic extracts were determined using ELISA-based kits. Schizophrenic patients showed higher plasma levels of pro-inflammatory PGE2 than age-matched controls (p=0.043). On the contrary, levels of anti-inflammatory 15-d-PGJ2 were lower (p=0.004), correlating with a lower expression of its nuclear target, PPARγ in nuclear extracts from PBMC (p=0.001). Although no changes in NFκB activity were observed between patients and healthy controls, the expression of its inhibitory protein IκBα was lower in the patients compared to the controls (p=0.027). These findings suggest that schizophrenia is associated with a systemic imbalance in the plasma levels of pro-inflammatory/anti-inflammatory prostaglandins in favor of the former. Furthermore, the expression and activity of anti-inflammatory PPARα are diminished in PBMC, which indicates a state of inflammation and blunted anti-inflammatory counterbalancing mechanisms at systemic level in these patients. © 2011 Elsevier B.V. Source


Clemente P.,Autonomous University of Madrid | Clemente P.,Institute Investigacion Sanitaria Hospital 12 Of Octubre I12 | Clemente P.,Karolinska Institutet | Peralta S.,Autonomous University of Madrid | And 12 more authors.
Journal of Biological Chemistry | Year: 2013

Cytochrome c oxidase (COX) or complex IV of the mitochondrial respiratory chain plays a fundamental role in energy production of aerobic cells. In humans, COX deficiency is the most frequent cause of mitochondrial encephalomyopathies. Human COX is composed of 13 subunits of dual genetic origin, whose assembly requires an increasing number of nuclear-encoded accessory proteins known as assembly factors. Here, we have identified and characterized human CCDC56, an 11.7-kDa mitochondrial transmembrane protein, as a new factor essential for COX biogenesis. CCDC56 shares sequence similarity with the yeast COX assembly factor Coa3 and was termed hCOA3. hCOA3-silenced cells display a severe COX functional alteration owing to a decreased stability of newly synthesized COX1 and an impairment in the holoenzyme assembly process. We show that hCOA3 physically interacts with both the mitochondrial translation machinery and COX structural subunits. We conclude that hCOA3 stabilizes COX1 co-translationally and promotes its assembly with COX partner subunits. Finally, our results identify hCOA3 as a new candidate when screening for genes responsible for mitochondrial diseases associated with COX deficiency. © 2013 by The American Society for Biochemistry and Molecular Biology, Inc. Source


Cruz-Bermudez A.,Autonomous University of Madrid | Cruz-Bermudez A.,Institute Investigacion Sanitaria Hospital 12 Of Octubre I12 | Cruz-Bermudez A.,Hospital Universitario Puerta Of Hierro Majadahonda | Vicente-Blanco R.J.,Autonomous University of Madrid | And 16 more authors.
PLoS ONE | Year: 2016

The presence of more than one non-severe pathogenic mutation in the same mitochondrial DNA (mtDNA) molecule is very rare. Moreover, it is unclear whether their co-occurrence results in an additive impact on mitochondrial function relative to single mutation effects. Here we describe the first example of a mtDNA molecule harboring three Leber's hereditary optic neuropathy (LHON)-associated mutations (m.11778G>A, m.14484T>C, m.11253T>C) and the analysis of its genetic, biochemical and molecular characterization in transmitochondrial cells (cybrids). Extensive characterization of cybrid cell lines harboring either the 3 mutations or the single classic m.11778G>A and m.14484T>C mutations revealed no differences in mitochondrial function, demonstrating the absence of a synergistic effect in this model system. These molecular results are in agreement with the ophthalmological characteristics found in the triple mutant patient, which were similar to those carrying single mtDNA LHON mutations. © 2016 Cruz-Bermúdez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Source

Discover hidden collaborations