Time filter

Source Type

Moreno S.,Hospital Universitario Ramon y Cajal | Moreno S.,Institute Investigacion Sanitaria Ramon y Cajal IRYCIS | Berenguer J.,Hospital General Universitario Gregorio Maranon | Berenguer J.,Institute Investigacion Sanitaria Gregorio Maranon IiSGM
Enfermedades Infecciosas y Microbiologia Clinica | Year: 2015

Dolutegravir is an HIV integrase inhibitor with a high genetic barrier to resistance and is active against raltegravir- and/or elvitegravir-resistant strains. The clinical development of dolutegravir for HIV infection rescue therapy is based on 3 clinical trials. In the SAILING trial, dolutegravir (5 mg once daily) in combination with 2 other antiretroviral agents was well tolerated and showed greater virological effect than raltegravir (400 mg twice daily) in the treatment of integrase inhibitor-naïve adults with virological failure infected with HIV strains with at least two-class drug resistance. The VIKING studies were designed to evaluate the efficacy of dolutegravir as rescue therapy in treatment-experienced patients infected with HIV strains with resistance mutations to raltegravir and/or elvitegravir. VIKING-1-2 was a dose-ranging phase IIb trial. VIKING-3 was a phase III trial in which dolutegravir (50 mg twice daily) formed part of an optimized regimen and proved safe and effective in this difficult-to-treat group of patients. Dolutegravir is the integrase inhibitor of choice for rescue therapy in multiresistant HIV infection, both in integrase inhibitor-naïve patients and in those previously treated with raltegravir or elvitegravir. © 2015 Elsevier España, S.L.U. All rights reserved. Source

Martinez-Martinez E.,Cardiovascular Translational Research | Lopez-Andres N.,Cardiovascular Translational Research | Lopez-Andres N.,University of Lorraine | Jurado-Lopez R.,Complutense University of Madrid | And 11 more authors.
Hypertension | Year: 2015

Remodeling, diastolic dysfunction, and arterial stiffness are some of the alterations through which obesity affects the cardiovascular system. Fibrosis and inflammation are important mechanisms underlying cardiovascular remodeling, although the precise promoters involved in these processes are still unclear. Galectin-3 (Gal-3) induces inflammation and fibrosis in the cardiovascular system. We have investigated the potential role of Gal-3 in cardiac damage in morbidly obese patients, and we have evaluated the protective effect of the Gal-3 inhibition in the occurrence of cardiovascular fibrosis and inflammation in an experimental model of obesity. Morbid obesity is associated with alterations in cardiac remodeling, mainly left ventricular hypertrophy and diastolic dysfunction. Obesity and hypertension are the main determinants of left ventricular hypertrophy. Insulin resistance, left ventricular hypertrophy, and circulating levels of C-reactive protein and Gal-3 are associated with a worsening of diastolic function in morbidly obese patients. Obesity upregulates Gal-3 production in the cardiovascular system in a normotensive animal model of diet-induced obesity by feeding for 6 weeks a high-fat diet (33.5% fat). Gal-3 inhibition with modified citrus pectin (100 mg/kg per day) reduced cardiovascular levels of Gal-3, total collagen, collagen I, transforming and connective growth factors, osteopontin, and monocyte chemoattractant protein-1 in the heart and aorta of obese animals without changes in body weight or blood pressure. In morbidly obese patients, Gal-3 levels are associated with diastolic dysfunction. In obese animals, Gal-3 blockade decreases cardiovascular fibrosis and inflammation. These data suggest that Gal-3 could be a novel therapeutic target in cardiac fibrosis and inflammation associated with obesity. © 2015 American Heart Association, Inc. Source

Ferrando-Martinez S.,Institute Investigacion Sanitaria Gregorio Maranon IiSGM | Ferrando-Martinez S.,University of Seville | Lorente R.,Institute Investigacion Sanitaria Gregorio Maranon IiSGM | Gurbindo D.,Hospital General Universitario Gregorio Maranon | And 5 more authors.
Journal of Pediatrics | Year: 2014

Objective To perform an extensive analysis of the immune status of asymptomatic children with the 22q11.2 deletion syndrome, with special emphasis on the regulatory T cells (Treg) population. Study design Analysis of thymic function, frequency and absolute counts of immune subsets, and phenotype of Treg were performed in 10 asymptomatic children bearing the 22q11.2 deletion and compared with 12 age-matched, healthy children. Results Children with 22q11.2 deletion syndrome showed a curtailed thymic output, lower T-cell levels, and a homeostatic deregulation in the CD4 T-cell compartment, characterized by a greater proliferative history in the naïve CD4 T-cell subset. Treg numbers were markedly reduced in children with 22q11.2 deletion syndrome, and remaining Treg showed mostly an activated phenotype. Conclusions Reduced thymic output in children with 22q11.2 deletion syndrome could be related with an increased proliferation in the naïve CD4 T-cell compartment and the consequent Treg activation to ensure that T-cell expansion remains under control. Deregulated peripheral homeostasis and loss of suppressive capacity by Treg could compromise the integrity of T-cell immunity during adulthood and play a relevant role in the increased incidence of autoimmune diseases reported in patients with the 22q11.2 deletion syndrome. © 2014 Mosby Inc. All rights reserved. Source

Toral M.,University of Granada | Romero M.,University of Granada | Romero M.,Institute Investigacion Biosanitaria Of Granada | Jimenez R.,University of Granada | And 15 more authors.
Clinical Science | Year: 2015

Fatty acids cause endothelial dysfunction involving increased ROS (reactive oxygen species) and reduced NO (nitric oxide) bioavailability. We show that in MAECs (mouse aortic endothelial cells), the PPARβ/δ (peroxisomeproliferator- activated receptor β/δ) agonist GW0742 prevented the decreased A23187-stimulated NO production, phosphorylation of eNOS (endothelial nitric oxide synthase) at Ser1177 and increased intracellular ROS levels caused by exposure to palmitate in vitro. The impaired endothelium-dependent relaxation to acetylcholine in mouse aorta induced by palmitate was restored by GW0742. In vivo, GW0742 treatment prevented the reduced aortic relaxation, phosphorylation of eNOS at Ser1177, and increased ROS production and NADPH oxidase in mice fed on a high-fat diet. The PPARβ/δ antagonist GSK0660 abolished all of these protective effects induced by GW0742. This agonist enhanced the expression of CPT (carnitine palmitoyltransferase)-1. The effects of GW0742 on acetylcholineinduced relaxation in aorta and on NO and ROS production in MAECs exposed to palmitate were abolished by the CPT-1 inhibitor etomoxir or by siRNA targeting CPT-1. GW0742 also inhibited the increase in DAG (diacylglycerol), PKCα/βII (protein kinase Cα/βII) activation, and phosphorylation of eNOS at Thr495 induced by palmitate in MAECs, which were abolished by etomoxir. In conclusion, PPARβ/δ activation restored the lipid-induced endothelial dysfunction by up-regulation of CPT-1, thus reducing DAG accumulation and the subsequent PKC-mediated ROS production and eNOS inhibition. © 2015 Authors. Source

Perez A.,Hospital Universitario Virgen Of Las Nieves | Gonzalez-Manzano S.,University of Salamanca | Jimenez R.,University of Granada | Jimenez R.,Institute Investigacion Biosanitaria Of Granada | And 9 more authors.
Pharmacological Research | Year: 2014

Quercetin exerts vasodilator, antiplatelet and antiproliferative effects and reduces blood pressure, oxidative status and end-organ damage in hypertensive humans and animal models. We hypothesized that oral quercetin might induce vasodilator effects in humans and that they might be related to the deconjugation of quercetin-3-O-glucuronide (Q3GA). Design: double blind, randomized, placebo-controlled trial. Fifteen healthy volunteers (26 ± 5 years, 6 female) were given a capsule containing placebo, 200 or 400 mg of quercetin in random order in three consecutive weeks. At 2 h a dose-dependent increase in Q3GA was observed in plasma (∼0.4 and 1 μM for 200 and 400 mg, respectively) with minor levels of quercetin and isorhamnetin. No changes were observed in blood pressure. At 5 h quercetin induced and increase in brachial arterial diameter that correlated with the product of the levels of Q3GA by the plasma glucuronidase activity. There was an increase in urinary levels of glutathione but there was no increase in nitrites plus nitrates. Quercetin and isorhamnetin also relaxed human umbilical arteries in vitro while Q3GA was without effect. In conclusions, quercetin exerts acute vasodilator effects in vivo in normotensive, normocholesterolemic human subjects. These results are consistent with the effects being due to the deconjugation of the metabolite Q3GA. © 2014 Elsevier Ltd. Source

Discover hidden collaborations