Entity

Time filter

Source Type

Hospital de Órbigo, Spain

Navarro-Sastre A.,Institute Investigacion Biomedica Pi Sunyer | Navarro-Sastre A.,Institute Salud Carlos III | Tort F.,Institute Investigacion Biomedica Pi Sunyer | Tort F.,Institute Salud Carlos III | And 18 more authors.
Molecular Genetics and Metabolism | Year: 2012

Mitochondrial DNA depletion syndrome (MDS) is a clinically heterogeneous group of mitochondrial disorders characterised by a quantitative reduction of the mitochondrial DNA copy number. Three main clinical forms of MDS: myopathic, encephalomyopathic and hepatocerebral have been defined, although patients may present with other MDS associated clinical symptoms and signs that cover a wide spectrum of onset age and disease. We studied 52 paediatric individuals suspected to have MDS. These patients have been divided into three different groups, and the appropriate MDS genes have been screened according to their clinical and biochemical phenotypes. Mutational study of DGUOK, MPV17, SUCLA2, SUCLG1 and POLG allowed us to identify 3 novel mutations (c.1048G>A and c.1049G>T in SUCLA2 and c.531. +. 4A>T in SUCLG1) and 7 already known mutations in 10 patients (8 families). Seventeen patients presented with mtDNA depletion in liver or muscle, but the cause of mtDNA depletion still remains unknown in 8 of them. When possible, we quantified mtDNA/nDNA and CS activity in the same tissue sample, providing an additional tool for the study of MDS. The ratio (mtDNA/nDNA)/CS has shed some light in the discrepant results between the mtDNA copy number and the enzymatic respiratory chain activities of some cases. © 2012 Elsevier Inc. Source


Navarro-Sastre A.,Institute Investigacion Biomedica Pi Sunyer | Navarro-Sastre A.,Research Center Biomedica En Red Of Enfermedades Raras | Tort F.,Institute Investigacion Biomedica Pi Sunyer | Tort F.,Research Center Biomedica En Red Of Enfermedades Raras | And 25 more authors.
American Journal of Human Genetics | Year: 2011

We report on ten individuals with a fatal infantile encephalopathy and/or pulmonary hypertension, leading to death before the age of 15 months. Hyperglycinemia and lactic acidosis were common findings. Glycine cleavage system and pyruvate dehydrogenase complex (PDHC) activities were low. Homozygosity mapping revealed a perfectly overlapping homozygous region of 1.24 Mb corresponding to chromosome 2 and led to the identification of a homozygous missense mutation (c.622G>T) in NFU1, which encodes a conserved protein suggested to participate in Fe-S cluster biogenesis. Nine individuals were homozygous for this mutation, whereas one was compound heterozygous for this and a splice-site (c.545+5G>A) mutation. The biochemical phenotype suggested an impaired activity of the Fe-S enzyme lipoic acid synthase (LAS). Direct measurement of protein-bound lipoic acid in individual tissues indeed showed marked decreases. Upon depletion of NFU1 by RNA interference in human cell culture, LAS and, in turn, PDHC activities were largely diminished. In addition, the amount of succinate dehydrogenase, but no other Fe-S proteins, was decreased. In contrast, depletion of the general Fe-S scaffold protein ISCU severely affected assembly of all tested Fe-S proteins, suggesting that NFU1 performs a specific function in mitochondrial Fe-S cluster maturation. Similar biochemical effects were observed in Saccharomyces cerevisiae upon deletion of NFU1, resulting in lower lipoylation and SDH activity. Importantly, yeast Nfu1 protein carrying the individuals' missense mutation was functionally impaired. We conclude that NFU1 functions as a late-acting maturation factor for a subset of mitochondrial Fe-S proteins. © 2011 The American Society of Human Genetics. Source

Discover hidden collaborations