Poing, Germany
Poing, Germany

Time filter

Source Type

Pausch H.,TU Munich | Kolle S.,Ludwig Maximilians University of Munich | Kolle S.,University College Dublin | Wurmser C.,TU Munich | And 7 more authors.
PLoS Genetics | Year: 2014

Genetic variants underlying reduced male reproductive performance have been identified in humans and model organisms, most of them compromising semen quality. Occasionally, male fertility is severely compromised although semen analysis remains without any apparent pathological findings (i.e., idiopathic subfertility). Artificial insemination (AI) in most cattle populations requires close examination of all ejaculates before insemination. Although anomalous ejaculates are rejected, insemination success varies considerably among AI bulls. In an attempt to identify genetic causes of such variation, we undertook a genome-wide association study (GWAS). Imputed genotypes of 652,856 SNPs were available for 7962 AI bulls of the Fleckvieh (FV) population. Male reproductive ability (MRA) was assessed based on 15.3 million artificial inseminations. The GWAS uncovered a strong association signal on bovine chromosome 19 (P = 4.08×10-59). Subsequent autozygosity mapping revealed a common 1386 kb segment of extended homozygosity in 40 bulls with exceptionally poor reproductive performance. Only 1.7% of 35,671 inseminations with semen samples of those bulls were successful. None of the bulls with normal reproductive performance was homozygous, indicating recessive inheritance. Exploiting whole-genome re-sequencing data of 43 animals revealed a candidate causal nonsense mutation (rs378652941, c.483C>A, p.Cys161X) in the transmembrane protein 95 encoding gene TMEM95 which was subsequently validated in 1990 AI bulls. Immunohistochemical investigations evidenced that TMEM95 is located at the surface of spermatozoa of fertile animals whereas it is absent in spermatozoa of subfertile animals. These findings imply that integrity of TMEM95 is required for an undisturbed fertilisation. Our results demonstrate that deficiency of TMEM95 severely compromises male reproductive performance in cattle and reveal for the first time a phenotypic effect associated with genomic variation in TMEM95. © 2014 Pausch et al.


Pausch H.,TU Munich | Flisikowski K.,TU Munich | Jung S.,TU Munich | Emmerling R.,Institute fuer Tierzucht | And 3 more authors.
Genetics | Year: 2011

Identifying quantitative trait loci (QTL) underlying complex, low-heritability traits is notoriously difficult. Prototypical for such traits, calving ease is an important breeding objective of cattle (Bos taurus)-improving programs. To identify QTL underlying calving ease, we performed a genome-wide association study using estimated breeding values (EBVs) as highly heritable phenotypes for paternal calving ease (pCE) and related traits. The massively structured study population consisted of 1800 bulls of the German Fleckvieh (FV) breed. Two pCE-associated regions on bovine chromosomes (BTA) 14 and 21 (P = 5.72 × 10-15 and P = 2.27 × 10-8, respectively) were identified using principal components analysis to correct for population stratification. The two most significantly associated SNPs explain 10% of the EBV variation. Since marker alleles with negative effect on pCE have positive effects on growth-related traits, the QTL may exert their effects on the birthing process through fetal growth traits. The QTL region on BTA14 corresponds to a human chromosome (HSA) region that is associated with growth characteristics. The HSA region corresponding to the BTA21 pCE QTL is maternally imprinted and involved in the Prader-Willi and Angelman syndromes. Resequencing of positional candidate genes on BTA14 revealed a highly significantly (P = 1.96 × 10-14) associated polymorphism ablating a polyadenylation signal of the gene encoding ribosomal protein S20 (RPS20). Our study demonstrates the leverage potential of EBVs in unraveling the genetic architecture of lowly heritable traits. Copyright © 2011 by the Genetics Society of America.


Pausch H.,TU Munich | Wang X.,TU Munich | Jung S.,TU Munich | Krogmeier D.,Institute fuer Tierzucht | And 4 more authors.
PLoS ONE | Year: 2012

Pigmentation patterns allow for the differentiation of cattle breeds. A dominantly inherited white head is characteristic for animals of the Fleckvieh (FV) breed. However, a minority of the FV animals exhibits peculiar pigmentation surrounding the eyes (ambilateral circumocular pigmentation, ACOP). In areas where animals are exposed to increased solar ultraviolet radiation, ACOP is associated with a reduced susceptibility to bovine ocular squamous cell carcinoma (BOSCC, eye cancer). Eye cancer is the most prevalent malignant tumour affecting cattle. Selection for animals with ACOP rapidly reduces the incidence of BOSCC. To identify quantitative trait loci (QTL) underlying ACOP, we performed a genome-wide association study using 658,385 single nucleotide polymorphisms (SNPs). The study population consisted of 3579 bulls of the FV breed with a total of 320,186 progeny with phenotypes for ACOP. The proportion of progeny with ACOP was used as a quantitative trait with high heritability (h2 = 0.79). A variance component based approach to account for population stratification uncovered twelve QTL regions on seven chromosomes. The identified QTL point to MCM6, PAX3, ERBB3, KITLG, LEF1, DKK2, KIT, CRIM1, ATRN, GSDMC, MITF and NBEAL2 as underlying genes for eye area pigmentation in cattle. The twelve QTL regions explain 44.96% of the phenotypic variance of the proportion of daughters with ACOP. The chromosomes harbouring significantly associated SNPs account for 54.13% of the phenotypic variance, while another 19.51% of the phenotypic variance is attributable to chromosomes without identified QTL. Thus, the missing heritability amounts to 7% only. Our results support a polygenic inheritance pattern of ACOP in cattle and provide the basis for efficient genomic selection of animals that are less susceptible to serious eye diseases. © 2012 Pausch et al.


Pausch H.,TU Munich | Emmerling R.,Institute fuer Tierzucht | Schwarzenbacher H.,ZuchtData EDV Dienstleistungen GmbH | Fries R.,TU Munich
Genetics Selection Evolution | Year: 2016

Background: The availability of whole-genome sequence data from key ancestors in bovine populations provides an exhaustive catalogue of polymorphic sites that segregate within and across cattle breeds. Sequence variants identified from the sequenced genome of key ancestors can be imputed into animals that have been genotyped using medium- and high-density genotyping arrays. Association analysis with imputed sequences, particularly when applied to multiple traits simultaneously, is a very powerful approach to detect candidate causal variants that underlie complex phenotypes. Results: We used whole-genome sequence data from 157 key ancestors of the German Fleckvieh cattle population to impute 20,561,798 sequence variants into 10,363 animals that had (partly imputed) genotypes based on 634,109 single nucleotide polymorphisms (SNPs). Rare variants were more frequent among the sequence-derived than the array-derived genotypes. Association studies with imputed sequence variants were performed using seven correlated udder conformation traits as response variables. The calculation of an approximate multi-trait test statistic enabled us to detect 12 quantitative trait loci (QTL) (P < 2.97 × 10-9) that affect different morphological features of the mammary gland. Among the tested variants, the most significant associations were found for imputed sequence variants at 11 QTL, whereas the top association signal was observed for an array-derived variant at a QTL on bovine chromosome 14. Seven QTL were associated with multiple phenotypes. Most QTL were located in non-coding regions of the genome but in close proximity of candidate genes that could be involved in mammary gland morphology (SP5, GC, NPFFR2, CRIM1, RXFP2, TBX5, RBM19 and ADAM12). Conclusions: Using imputed sequence variants in association analyses allows the detection of QTL at maximum resolution. Multi-trait approaches can reveal QTL that are not detected in single-trait association studies. Most QTL for udder conformation traits were located in non-coding regions of the genome, which suggests that mutations in regulatory sequences are the major determinants of variation in mammary gland morphology in cattle. © 2016 Pausch et al.


Pausch H.,TU Munich | Aigner B.,TU Munich | Emmerling R.,Institute fuer Tierzucht | Edel C.,Institute fuer Tierzucht | And 2 more authors.
Genetics Selection Evolution | Year: 2013

Background: Currently, genome-wide evaluation of cattle populations is based on SNP-genotyping using ∼ 54 000 SNP. Increasing the number of markers might improve genomic predictions and power of genome-wide association studies. Imputation of genotypes makes it possible to extrapolate genotypes from lower to higher density arrays based on a representative reference sample for which genotypes are obtained at higher density. Methods. Genotypes using 639 214 SNP were available for 797 bulls of the Fleckvieh cattle breed. The data set was divided into a reference and a validation population. Genotypes for all SNP except those included in the BovineSNP50 Bead chip were masked and subsequently imputed for animals of the validation population. Imputation of genotypes was performed with Beagle, findhap.f90, MaCH and Minimac. The accuracy of the imputed genotypes was assessed for four different scenarios including 50, 100, 200 and 400 animals as reference population. The reference animals were selected to account for 78.03%, 89.21%, 97.47% and > 99% of the gene pool of the genotyped population, respectively. Results: Imputation accuracy increased as the number of animals and relatives in the reference population increased. Population-based algorithms provided highly reliable imputation of genotypes, even for scenarios with 50 and 100 reference animals only. Using MaCH and Minimac, the correlation between true and imputed genotypes was > 0.975 with 100 reference animals only. Pre-phasing the genotypes of both the reference and validation populations not only provided highly accurate imputed genotypes but was also computationally efficient. Genome-wide analysis of imputation accuracy led to the identification of many misplaced SNP. Conclusions: Genotyping key animals at high density and subsequent population-based genotype imputation yield high imputation accuracy. Pre-phasing the genotypes of the reference and validation populations is computationally efficient and results in high imputation accuracy, even when the reference population is small. © 2013 Pausch et al; licensee BioMed Central Ltd.


PubMed | Ludwig Maximilians University of Munich, TU Munich, ZuchtData EDV Dienstleistungen GmbH and Institute fuer Tierzucht
Type: Journal Article | Journal: PLoS genetics | Year: 2014

Genetic variants underlying reduced male reproductive performance have been identified in humans and model organisms, most of them compromising semen quality. Occasionally, male fertility is severely compromised although semen analysis remains without any apparent pathological findings (i.e., idiopathic subfertility). Artificial insemination (AI) in most cattle populations requires close examination of all ejaculates before insemination. Although anomalous ejaculates are rejected, insemination success varies considerably among AI bulls. In an attempt to identify genetic causes of such variation, we undertook a genome-wide association study (GWAS). Imputed genotypes of 652,856 SNPs were available for 7962 AI bulls of the Fleckvieh (FV) population. Male reproductive ability (MRA) was assessed based on 15.3 million artificial inseminations. The GWAS uncovered a strong association signal on bovine chromosome 19 (P = 4.08 10(-59)). Subsequent autozygosity mapping revealed a common 1386 kb segment of extended homozygosity in 40 bulls with exceptionally poor reproductive performance. Only 1.7% of 35,671 inseminations with semen samples of those bulls were successful. None of the bulls with normal reproductive performance was homozygous, indicating recessive inheritance. Exploiting whole-genome re-sequencing data of 43 animals revealed a candidate causal nonsense mutation (rs378652941, c.483C>A, p.Cys161X) in the transmembrane protein 95 encoding gene TMEM95 which was subsequently validated in 1990 AI bulls. Immunohistochemical investigations evidenced that TMEM95 is located at the surface of spermatozoa of fertile animals whereas it is absent in spermatozoa of subfertile animals. These findings imply that integrity of TMEM95 is required for an undisturbed fertilisation. Our results demonstrate that deficiency of TMEM95 severely compromises male reproductive performance in cattle and reveal for the first time a phenotypic effect associated with genomic variation in TMEM95.


PubMed | ZuchtData EDV Dienstleistungen GmbH, TU Munich and Institute fuer Tierzucht
Type: | Journal: Genetics, selection, evolution : GSE | Year: 2016

The availability of whole-genome sequence data from key ancestors in bovine populations provides an exhaustive catalogue of polymorphic sites that segregate within and across cattle breeds. Sequence variants identified from the sequenced genome of key ancestors can be imputed into animals that have been genotyped using medium- and high-density genotyping arrays. Association analysis with imputed sequences, particularly when applied to multiple traits simultaneously, is a very powerful approach to detect candidate causal variants that underlie complex phenotypes.We used whole-genome sequence data from 157 key ancestors of the German Fleckvieh cattle population to impute 20,561,798 sequence variants into 10,363 animals that had (partly imputed) genotypes based on 634,109 single nucleotide polymorphisms (SNPs). Rare variants were more frequent among the sequence-derived than the array-derived genotypes. Association studies with imputed sequence variants were performed using seven correlated udder conformation traits as response variables. The calculation of an approximate multi-trait test statistic enabled us to detect 12 quantitative trait loci (QTL) (P < 2.97 10(-9)) that affect different morphological features of the mammary gland. Among the tested variants, the most significant associations were found for imputed sequence variants at 11 QTL, whereas the top association signal was observed for an array-derived variant at a QTL on bovine chromosome 14. Seven QTL were associated with multiple phenotypes. Most QTL were located in non-coding regions of the genome but in close proximity of candidate genes that could be involved in mammary gland morphology (SP5, GC, NPFFR2, CRIM1, RXFP2, TBX5, RBM19 and ADAM12).Using imputed sequence variants in association analyses allows the detection of QTL at maximum resolution. Multi-trait approaches can reveal QTL that are not detected in single-trait association studies. Most QTL for udder conformation traits were located in non-coding regions of the genome, which suggests that mutations in regulatory sequences are the major determinants of variation in mammary gland morphology in cattle.

Loading Institute fuer Tierzucht collaborators
Loading Institute fuer Tierzucht collaborators