Time filter

Source Type

Hannover, Germany

Griaud F.,University of Manchester | Pierce A.,University of Manchester | Gonzalez Sanchez M.B.,University of Manchester | Scott M.,University of Glasgow | And 5 more authors.
Leukemia | Year: 2013

THOC5 is a member of the THO complex that is involved in processing and transport of mRNA. We have shown previously that hematopoietic stem cells have an absolute requirement for THOC5 for survival and that THOC5 is phosphorylated on tyrosine 225 as a consequence of leukemogenic protein tyrosine kinase (PTK) action. We have investigated pathways for THOC5 phosphorylation to develop an understanding of THO complex modulation by tyrosine kinase (TK) oncogenes in leukemias. We demonstrate that THOC5 phosphorylation is mediated by Src PTK and CD45 protein tyrosine phosphatase action and that this event is sensitive to oxidative status. We show that THOC5 phosphorylation is elevated in stem cells from patients with chronic myeloid leukemia (CML) and that this phosphorylation is sensitive to the frontline drugs used in CML treatment. Further we show that THOC5 Y225 phosphorylation governs mRNA binding. In addition, CXCL12 is shown to induce THOC5 Y225 phosphorylation, and site-directed mutagenesis demonstrates that this modulates motile response. In conclusion, we delineate a signaling pathway stimulated by leukemogenic PTKs, chemokines and oxidative stress that can affect THO complex mediation of gene expression describing mechanisms for post-transcriptional regulation of protein levels. © 2013 Macmillan Publishers Limited All rights reserved. Source

Koch A.,Institute fuer Biochemie | Saran S.,Institute fuer Biochemie | Tran D.D.,Institute fuer Biochemie | Klebba-Farber S.,Institute fuer Biochemie | And 6 more authors.
Cell Communication and Signaling | Year: 2014

Background: One of the most insidious characteristics of cancer is its spread to and ability to compromise distant organs via the complex process of metastasis. Communication between cancer cells and organ-resident cells via cytokines/chemokines and direct cell-cell contacts are key steps for survival, proliferation and invasion of metastasized cancer cells in organs. Precision-cut liver slices (PCLS) are considered to closely reflect the in vivo situation and are potentially useful for studying the interaction of cancer cells with liver-resident cells as well as being a potentially useful tool for screening anti-cancer reagents. Application of the PCLS technique in the field of cancer research however, has not yet been well developed. Results: We established the mouse PCLS system using perfluorodecalin (PFD) as an artificial oxygen carrier. Using this system we show that the adherence of green fluorescent protein (GFP) labeled MDA-MB-231 (highly invasive) cells to liver tissue in the PCLS was 5-fold greater than that of SK-BR-3 (less invasive) cells. In addition, we generated PCLS from THOC5, a member of transcription/export complex (TREX), knockout (KO) mice. The PCLS still expressed Gapdh or Albumin mRNAs at normal levels, while several chemokine/growth factor or metalloprotease genes, such as Cxcl12, Pdgfa, Tgfb, Wnt11, and Mmp1a genes were downregulated more than 2-fold. Interestingly, adhesion of cancer cells to THOC5 KO liver slices was far less (greater than 80% reduction) than to wild-type liver slices. Conclusion: Mouse PCLS cultures in the presence of PFD may serve as a useful tool for screening local adherence and invasiveness of individual cancer cells, since single cells can be observed. This method may also prove useful for identification of genes in liver-resident cells that support cancer invasion by using PCLS from transgenic liver. Source

Mancini A.,Institute fuer Biochemie | Mancini A.,Mount Sinai School of Medicine | Niemann-Seyde S.C.,Institute fuer Biochemie | Pankow R.,Forschungsinstitut fuer Molekulare Pharmakologie | And 8 more authors.
BMC Biology | Year: 2010

Background: The transcription/export complex is evolutionarily conserved from yeast to man and is required for coupled transcription elongation and nuclear export of mRNAs. FMIP(Fms interacting protein) is a member of the THO (suppressors of the transcriptional defects of hpr1delta by overexpression) complex which is a subcomplex of the transcription/export complex. THO complex (THOC) components are not essential for bulk poly (A)+ RNA export in higher eukaryotes, but for the nuclear export of subset of mRNAs, however, their exact role is still unclear.Results: To study the role of THOC5/Fms interacting protein in vivo, we generated THOC5/Fms interacting protein knockout mice. Since these mice are embryonic lethal, we then generated interferon inducible conditional THOC5/Fms interacting protein knockout mice. After three poly injections all of the mice died within 14 days. No pathological alterations, however, were observed in liver, kidney or heart. Thus we considered the hematopoietic system and found that seven days after poly injection, the number of blood cells in peripheral blood decreased drastically. Investigation of bone marrow cells showed that these became apoptotic within seven days after poly injection. Committed myeloid progenitor cells and cells with long term reconstituting potential were lost from bone marrow within four days after poly injection. Furthermore, infusion of normal bone marrow cells rescued mice from death induced by loss of THOC5/Fms interacting protein.Conclusion: THOC5/Fms interacting protein is an essential element in the maintenance of hematopoiesis. Furthermore, mechanistically depletion of THOC5/Fms interacting protein causes the down-regulation of its direct interacting partner, THOC1 which may contribute to altered THO complex function and cell death. © 2010 Mancini et al; licensee BioMed Central Ltd. Source

Saran S.,Institute fuer Biochemie | Tran D.D.H.,Institute fuer Biochemie | Klebba-Farber S.,Institute fuer Biochemie | Moran-Losada P.,Padiatrische Pneumologie | And 7 more authors.
BMC Cell Biology | Year: 2013

Background: THO (Suppressors of the transcriptional defects of hpr1 delta by overexpression) complex 5 (THOC5), an mRNA export protein, is involved in the expression of only 1% of all genes. Using an interferon inducible knockout mouse system, we have previously shown that THOC5 is an essential element in the maintenance of hematopoietic stem cells and cytokine-mediated hematopoiesis in adult mice. Here we interrogate THOC5 function in cell differentiation beyond the hematopoietic system and study pathological changes caused by THOC5 deficiency.Results: To examine whether THOC5 plays a role in general differentiation processes, we generated tamoxifen inducible THOC5 knockout mice. We show here that the depletion of THOC5 impaired not only hematopoietic differentiation, but also differentiation and self renewal of the gut epithelium. Depletion of the THOC5 gene did not cause pathological alterations in liver or kidney.We further show that THOC5 is indispensable for processing of mRNAs induced by Wnt (wingless/integrated) signaling which play key roles in epithelial cell differentiation/proliferation. A subset of Wnt target mRNAs, SRY-box containing gene 9 (Sox9), and achaete-scute complex homolog 2 (Ascl2), but not Fibronectin 1 (Fn1), were down-regulated in THOC5 knockout intestinal cells. The down-regulated Wnt target mRNAs were able to bind to THOC5. Furthermore, pathological alterations in the gastrointestinal tract induced translocation of intestinal bacteria and caused sepsis in mice. The bacteria translocation may cause Toll-like receptor activation. We identified one of the Toll-like receptor inducible genes, prostaglandin-endoperoxidase synthase 2 (Ptgs2 or COX2) transcript as THOC5 target mRNA.Conclusion: THOC5 is indispensable for processing of only a subset of mRNAs, but plays a key role in processing of mRNAs inducible by Wnt signals. Furthermore, THOC5 is dispensable for general mRNA export in terminally differentiated organs, indicating that multiple mRNA export pathways exist. These data imply that THOC5 may be a useful tool for studying intestinal stem cells, for modifying the differentiation processes and for cancer therapy. © 2013 Saran et al.; licensee BioMed Central Ltd. Source

Tran D.D.H.,Institute fuer Biochemie | Koch A.,Institute fuer Biochemie | Tamura T.,Institute fuer Biochemie
Cell Communication and Signaling | Year: 2014

Cell growth, differentiation, and commitment to a restricted lineage are guided by a timely expressed set of growth factor/cytokine receptors and their down-stream transcription factor genes. Transcriptional control mechanisms of gene expression during differentiation have been mainly studied by focusing on the cis- and trans-elements in promoters however, the role of mRNA export machinery during differentiation has not been adequately examined. THO (Suppressors of the transcriptional defects of hpr1 delta by overexpression) complex 5 (THOC5) is a member of THO complex which is a subcomplex of the transcription/export complex (TREX). THOC5 is evolutionarily conserved in higher eukaryotes, however the exact roles of THOC5 in transcription and mRNA export are still unclear. In this review, we focus on recently uncovered aspects of the role of THOC5 in signal transduction induced by extracellular stimuli. THOC5 is phosphorylated by several protein kinases at multiple residues upon extracellular stimuli. These include stimulation with growth factors/cytokines/chemokines, or DNA damage reagents. Furthermore, THOC5 is a substrate for several oncogenic tyrosine kinases, suggesting that THOC5 may be involved in cancer development. Recent THOC5 knockout mouse data reveal that THOC5 is an essential element in the maintenance of stem cells and growth factor/cytokine-mediated differentiation/proliferation. Furthermore, depletion of THOC5 influences less than 1% of total mRNA export in the steady state, however it influences more than 90% of growth factor/cytokine induced genes. THOC5, thereby contributes to the 3′ processing and/or export of immediate-early genes induced by extracellular stimuli. These studies bring new insight into the link between the mRNA export complex and immediate-early gene response. The data from these studies also suggest that THOC5 may be a useful tool for studying stem cell biology, for modifying the differentiation processes and for cancer therapy. © 2014 Tran et al.; licensee BioMed Central Ltd. Source

Discover hidden collaborations