Entity

Time filter

Source Type


Guilpart N.,Institute Francais Of La Vigne Et Du Vin Pole Rhone Mediterranee | Guilpart N.,French National Institute for Agricultural Research | Metay A.,Montpellier SupAgro | Gary C.,French National Institute for Agricultural Research
European Journal of Agronomy | Year: 2014

Grapevine yield formation extends over two consecutive years (seasons 1 and 2). The inflorescence formation (around flowering in season 1) is crucial as it is involved in the formation of both the bunch number per vine and the berry number per bunch in season 2, that account for about 60% and 30% of year-to-year yield variation of grapevine, respectively. Light, temperature, water and nitrogen availability are known to affect this early stage. The aims of this work were to determine the critical periods during which inflorescence formation is sensitive to water and nitrogen stress and quantify their effects on it. To address these issues, we used a 3-year (2010-2012) field experiment (cv. Shiraz) in combination with a water balance simulation model (WaLIS) and a 6-year field experiment (cv. Aranel). In both experiments, different treatments were applied to create a gradient of water and nitrogen supply (treatments involved cover cropping, irrigation and fertilization). The grapevine yield and its components were recorded. Water and nitrogen status of grapevine were monitored throughout the season. Inflorescence formation was sensitive to water and nitrogen stress during a critical period that occurred between 400 and 700. °Cd after budburst in season 1. Bud fertility (number of bunches per shoot) and berry number per bunch in season 2 were significantly correlated with the fraction of transpirable soil water (FTSW), predawn leaf water potential and leaf nitrogen content at that time for both cultivars. Water and nitrogen stress during the critical period of season 1 determined 65-70% of grapevine yield in season 2. Our results show that the maximum yield that can be reached in season 2 is determined during the critical period of season 1 and they provide clues to estimate it. These results may help grape growers to adapt their practices (i) in season 1 to ensure a sufficient maximum yield for season 2 and (ii) to actually obtain the targeted yield in season 2 depending on the maximum yield determined in season 1. © 2013 Elsevier B.V. Source


Abou-Mansour E.,University of Fribourg | Debieux J.-L.,University of Fribourg | Ramirez-Suero M.,CNRS Vine Biotechnology and Environment Laboratory | Benard-Gellon M.,CNRS Vine Biotechnology and Environment Laboratory | And 11 more authors.
Phytochemistry | Year: 2015

Liquid chromatography-diode array screening of the organic extract of the cultures of 13 isolates of the fungus Neofusicoccum parvum, the main causal agent of botryosphaeria dieback of grapevine, showed similar metabolites. One strain was selected for further chemical studies and led to the isolation and characterisation of 13 metabolites. Structures were elucidated through spectroscopic analyses, including one- and two-dimensional NMR and mass spectrometry, and through comparison to literature data. The isolated compounds belong to four different chemical families: five metabolites, namely, (-)-terremutin (1), (+)-terremutin hydrate (2), (+)-. epi-sphaeropsidone (3) (-)-4-chloro-terremutin hydrate (4) and(+)-4-hydroxysuccinate-terremutin hydrate (5), belong to the family of dihydrotoluquinones; two metabolites, namely, (6S,. 7R) asperlin (6) and (6R,. 7S)-. dia-asperlin (7), belong to the family of epoxylactones; four metabolites, namely, (R)-(-)-mellein (8), (3R,. 4R)-4-hydroxymellein (9), (3R,. 4S)-4-hydroxymellein (10) (R)(-)-3-hydroxymellein (11), belong to the family of dihydroisocoumarins; and two of the metabolites, namely, 6-methyl-salicylic acid (12) and 2-hydroxypropyl salicylic acid (13), belong to the family of hydroxybenzoic acids. We determined the phytotoxic activity of the isolated metabolites through a leaf disc assay and the expression of defence-related genes in Vitis vinifera cells cv. Chardonnay cultured with (-)-terremutin (1), the most abundant metabolite. Finally, analysis of the brown stripes of grapevine wood from plants showing botryosphaeria dieback symptoms revealed the presence of two of the isolated phytotoxins. © 2015 Elsevier Ltd. Source


Spagnolo A.,CNRS Research Unit on Grapevine and Wines in Champagne | Larignon P.,Institute Francais Of La Vigne Et Du Vin Pole Rhone Mediterranee | Magnin-Robert M.,CNRS Research Unit on Grapevine and Wines in Champagne | Hovasse A.,CNRS Hubert Curien Multi-disciplinary Institute | And 5 more authors.
International Journal of Molecular Sciences | Year: 2014

Botryosphaeria dieback is a fungal grapevine trunk disease that currently represents a threat for viticulture worldwide because of the important economical losses due to reduced yield of affected plants and their premature death. Neofusicoccum parvum and Diplodia seriata are among the causal agents. Vine green stems were artificially infected with N. parvum or D. seriata at the onset of three different phenological stages (G stage (separated clusters), flowering and veraison). Highest mean lesion lengths were recorded at flowering. Major proteome changes associated to artificial infections during the three different phenological stages were also reported using two dimensional gel electrophoresis (2D)-based analysis. Twenty (G stage), 15 (flowering) and 13 (veraison) differentially expressed protein spots were subjected to nanoLC-MS/MS and a total of 247, 54 and 25 proteins were respectively identified. At flowering, a weaker response to the infection was likely activated as compared to the other stages, and some defense-related proteins were even down regulated (e.g., superoxide dismutase, major latex-like protein, and pathogenesis related protein 10). Globally, the flowering period seemed to represent the period of highest sensitivity of grapevine to Botryosphaeria dieback agent infection, possibly being related to the high metabolic activity in the inflorescences. © 2014 by the authors; licensee MDPI, Basel, Switzerland. Source


Spagnolo A.,CNRS Research Unit on Grapevine and Wines in Champagne | Magnin-Robert M.,CNRS Research Unit on Grapevine and Wines in Champagne | Alayi T.D.,University of Strasbourg | Cilindre C.,CNRS Research Unit on Grapevine and Wines in Champagne | And 9 more authors.
Phytopathology | Year: 2014

Botryosphaeria dieback is a fungal grapevine trunk disease that represents a threat for viticulture worldwide due to the decreased production of affected plants and their premature death. This dieback is characterized by a typical wood discoloration called brown stripe. Herein, a proteome comparison of the brown striped wood from Botryosphaeria diebackaffected standing vines cultivars Chardonnay, Gewurztraminer, and Mourvèdre was performed. The transcript analysis for 15 targeted genes and the quantification of both total phenolics and specific stilbenes were also performed. Several pathogenesis-related proteins and members of the antioxidant system were more abundant in the brown striped wood of the three cultivars, whereas other defense-related proteins were less abundant. Additionally, total phenolics and some specific stilbenes were more accumulated in the brown striped wood. Strongest differences among the cultivars concerned proteins of the primary metabolism, which looked to be particularly impaired in the brown striped wood of 'Chardonnay'. Low abundance of some proteins involved in defense response probably contributes to make global response insufficient to avoid the symptom development. The differential susceptibility of the three grapevine cultivars could be linked to the diverse expression of various proteins involved in defense response, stress tolerance, and metabolism. Source

Discover hidden collaborations