Entity

Time filter

Source Type


van der Heijden M.G.A.,Institute for Sustainability science | van der Heijden M.G.A.,University of Zurich | van der Heijden M.G.A.,University Utrecht | Martin F.M.,University of Lorraine | And 2 more authors.
New Phytologist | Year: 2015

Almost all land plants form symbiotic associations with mycorrhizal fungi. These below-ground fungi play a key role in terrestrial ecosystems as they regulate nutrient and carbon cycles, and influence soil structure and ecosystem multifunctionality. Up to 80% of plant N and P is provided by mycorrhizal fungi and many plant species depend on these symbionts for growth and survival. Estimates suggest that there are c. 50 000 fungal species that form mycorrhizal associations with c. 250 000 plant species. The development of high-throughput molecular tools has helped us to better understand the biology, evolution, and biodiversity of mycorrhizal associations. Nuclear genome assemblies and gene annotations of 33 mycorrhizal fungal species are now available providing fascinating opportunities to deepen our understanding of the mycorrhizal lifestyle, the metabolic capabilities of these plant symbionts, the molecular dialogue between symbionts, and evolutionary adaptations across a range of mycorrhizal associations. Large-scale molecular surveys have provided novel insights into the diversity, spatial and temporal dynamics of mycorrhizal fungal communities. At the ecological level, network theory makes it possible to analyze interactions between plant-fungal partners as complex underground multi-species networks. Our analysis suggests that nestedness, modularity and specificity of mycorrhizal networks vary and depend on mycorrhizal type. Mechanistic models explaining partner choice, resource exchange, and coevolution in mycorrhizal associations have been developed and are being tested. This review ends with major frontiers for further research. © 2015 The Authors.


Albrecht M.,Linc Global | Albrecht M.,Institute for Sustainability science | Padron B.,Linc Global | Bartomeus I.,CSIC - Donana Biological Station | Traveset A.,Linc Global
Proceedings of the Royal Society B: Biological Sciences | Year: 2014

Compartmentalization-the organization of ecological interaction networks into subsets of species that do not interact with other subsets (true compartments) or interact more frequently among themselves than with other species (modules)-has been identified as a key property for the functioning, stability and evolution of ecological communities. Invasions by entomophilous invasive plants may profoundly alter the way interaction networks are compartmentalized. We analysed a comprehensive dataset of 40 paired plant-pollinator networks (invaded versus uninvaded) to test this hypothesis. We show that invasive plants have higher generalization levels with respect to their pollinators than natives. The consequences for network topology are that-rather than displacing native species fromthe network-plant invaders attracting pollinators into invaded modules tend to play new important topological roles (i.e. network hubs, module hubs and connectors) and cause role shifts in native species, creating larger modules that are more connected among each other.While the number of true compartmentswas lower in invaded compared with uninvaded networks, the effect of invasion on modularitywas contingent on the studysystem. Interestingly, the generalization level of the invasive plants partially explains this pattern, with more generalized invaders contributing to a lower modularity. Our findings indicate that the altered interaction structure of invaded networks makes them more robust against simulated random secondary species extinctions, but more vulnerable when the typically highly connected invasive plants go extinct first. The consequences and pathways by which biological invasions alter the interaction structure of plant-pollinator communities highlighted in this study may have important dynamical and functional implications, for example, by influencing multi-species reciprocal selection regimes and coevolutionary processes. © 2014 The Authors Published by the Royal Society. All rights reserved.


Schlaeppi K.,Institute for Sustainability science | Bulgarelli D.,University of Dundee
Molecular Plant-Microbe Interactions | Year: 2015

Plants host distinct microbial communities on and inside their tissues designated the plant microbiota. Microbial community profiling enabled the description of the phylogenetic structure of the plant microbiota to an unprecedented depth, whereas functional insights are largely derived from experiments using individual microorganisms. The binary interplay between isolated members of the plant microbiota and host plants ranges from mutualistic to commensalistic and pathogenic relationships. However, how entire microbial communities capable of executing both growth-promoting and growth-compromising activities interfere with plant fitness remains largely unknown. Ultimately, unravelling the net result of microbial activities encoded in the extended plant genome-the plant microbiome- will be key to understanding and exploiting the full yield potential of a crop plant. In this perspective, we summarize first achievements of plant-microbiome research, we discuss future research directions, and we provide ideas for the translation of basic science to application to capitalize on the plant microbiome at work. © 2015 The American Phytopathological Society.


Li Y.,Chinese Academy of Agricultural Sciences | Zhang X.,Chinese Academy of Agricultural Sciences | Zhang X.,Henan Agricultural University | Chen X.,Chinese Academy of Agricultural Sciences | And 4 more authors.
Scientific Reports | Year: 2015

As a pollen feeder, Propylea japonica would be directly exposed to Cry proteins in Bacillus thuringiensis (Bt)-transgenic rice fields. The effect of Cry1C-or Cry2A-containing transgenic rice pollen on the fitness of P. japonica was assessed using two dietary-exposure experiments in the laboratory. In the first experiment, larval developmental time of P. japonica was significantly longer when fed pollen from Bt rice lines rather than control pollen but other life table parameters were not significantly affected. In the second experiment, P. japonica was not affected when fed a rapeseed pollen-based diet containing purified Cry1C or Cry2A at concentrations that were >10-times higher than in pollen, but P. japonica was affected when the diet contained E-64 as a positive control. In both experiments, the stability and bioactivity of the Cry proteins in the food sources and the uptake of the proteins by P. japonica were confirmed. The results show that P. japonica is not sensitive to Cry1C or Cry2A proteins; the effect observed in the first experiment was likely attributable to unknown differences in the nutritional composition of Bt rice pollen. Overall, the data indicate that the growing of Cry1C-or Cry2A-transgenic rice should pose a negligible risk to P. japonica.


Luscher A.,Institute for Sustainability science | Mueller-Harvey I.,University of Reading | Soussana J.F.,French National Institute for Agricultural Research | Rees R.M.,Scotland's Rural College | Peyraud J.L.,French National Institute for Agricultural Research
Grass and Forage Science | Year: 2014

European grassland-based livestock production systems face the challenge of producing more meat and milk to meet increasing world demands and to achieve this using fewer resources. Legumes offer great potential for achieving these objectives. They have numerous features that can act together at different stages in the soil-plant-animal-atmosphere system, and these are most effective in mixed swards with a legume proportion of 30-50%. The resulting benefits include reduced dependence on fossil energy and industrial N-fertilizer, lower quantities of harmful emissions to the environment (greenhouse gases and nitrate), lower production costs, higher productivity and increased protein self-sufficiency. Some legume species offer opportunities for improving animal health with less medication, due to the presence of bioactive secondary metabolites. In addition, legumes may offer an adaptation option to rising atmospheric CO2 concentrations and climate change. Legumes generate these benefits at the level of the managed land-area unit and also at the level of the final product unit. However, legumes suffer from some limitations, and suggestions are made for future research to exploit more fully the opportunities that legumes can offer. In conclusion, the development of legume-based grassland-livestock systems undoubtedly constitutes one of the pillars for more sustainable and competitive ruminant production systems, and it can be expected that forage legumes will become more important in the future. © 2014 The Authors. Grass and Forage Science Published by John Wiley & Sons Ltd.

Discover hidden collaborations