Institute for Stem Cell Therapy and Exploration of Monogenic Diseases

Évry, France

Institute for Stem Cell Therapy and Exploration of Monogenic Diseases

Évry, France
SEARCH FILTERS
Time filter
Source Type

Boza-Moran M.G.,Royal Holloway, University of London | Martinez-Hernandez R.,Royal Holloway, University of London | Martinez-Hernandez R.,Hospital Of La Santa Creu I Sant Pau | Bernal S.,Hospital Of La Santa Creu I Sant Pau | And 10 more authors.
Scientific Reports | Year: 2015

Spinal muscular atrophy (SMA) is a neuromuscular disease caused by mutations in Survival Motor Neuron 1 (SMN1), leading to degeneration of alpha motor neurons (MNs) but also affecting other cell types. Induced pluripotent stem cell (iPSC)-derived human MN models from severe SMA patients have shown relevant phenotypes. We have produced and fully characterized iPSCs from members of a discordant consanguineous family with chronic SMA. We differentiated the iPSC clones into ISL-1+/ChAT+ MNs and performed a comparative study during the differentiation process, observing significant differences in neurite length and number between family members. Analyses of samples from wild-type, severe SMA type I and the type IIIa/IV family showed a progressive decay in SMN protein levels during iPSC-MN differentiation, recapitulating previous observations in developmental studies. PLS3 underwent parallel reductions at both the transcriptional and translational levels. The underlying, progressive developmental decay in SMN and PLS3 levels may lead to the increased vulnerability of MNs in SMA disease. Measurements of SMN and PLS3 transcript and protein levels in iPSC-derived MNs show limited value as SMA biomarkers.


Grybek V.,French Institute of Health and Medical Research | Aubry L.,UEVE UMR 861 | Aubry L.,French Institute of Health and Medical Research | Maupetit-Mehouas S.,French Institute of Health and Medical Research | And 6 more authors.
Stem Cell Reports | Year: 2014

Data from the literature indicate that genomic imprint marks are disturbed in human pluripotent stem cells (PSCs). GNAS is an imprinted locus that produces one biallelic (Gsα) and four monoallelic (NESP55, GNAS-AS1, XLsα, and A/B) transcripts due to differential methylation of their promoters (DMR). To document imprinting at the GNAS locus in PSCs, we studied GNAS locus DMR methylation and transcript (NESP55, XLsα, and A/B) expression in human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) derived from two human fibroblasts and their progenies. Results showed that (1) methylation at the GNAS locus DMRs is DMR and cell line specific, (2) changes in allelic transcript expression can be independent of a change in allele-specific DNA methylation, and (3) interestingly, methylation at A/B DMR is correlated with A/B transcript expression. These results indicate that these models are valuable to study the mechanisms controlling GNAS methylation, factors involved in transcript expression, and possibly mechanisms involved in the pathophysiology of pseudohypoparathyroidism type 1B. © 2014 The Authors.


PubMed | Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Beckman Research Institute, Hospital Of La Santa Creu I Sant Pau and Royal Holloway, University of London
Type: | Journal: Scientific reports | Year: 2015

Spinal muscular atrophy (SMA) is a neuromuscular disease caused by mutations in Survival Motor Neuron 1 (SMN1), leading to degeneration of alpha motor neurons (MNs) but also affecting other cell types. Induced pluripotent stem cell (iPSC)-derived human MN models from severe SMA patients have shown relevant phenotypes. We have produced and fully characterized iPSCs from members of a discordant consanguineous family with chronic SMA. We differentiated the iPSC clones into ISL-1+/ChAT+ MNs and performed a comparative study during the differentiation process, observing significant differences in neurite length and number between family members. Analyses of samples from wild-type, severe SMA type I and the type IIIa/IV family showed a progressive decay in SMN protein levels during iPSC-MN differentiation, recapitulating previous observations in developmental studies. PLS3 underwent parallel reductions at both the transcriptional and translational levels. The underlying, progressive developmental decay in SMN and PLS3 levels may lead to the increased vulnerability of MNs in SMA disease. Measurements of SMN and PLS3 transcript and protein levels in iPSC-derived MNs show limited value as SMA biomarkers.


PubMed | Ecole Normale Superieure de Lyon, University of Coimbra, National Institute For Digestive Diseases S Of Bellis, Aix - Marseille University and 4 more.
Type: | Journal: Cell death & disease | Year: 2016

Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder characterized by a dramatic appearance of premature aging. HGPS is due to a single-base substitution in exon 11 of the LMNA gene (c.1824C>T) leading to the production of a toxic form of the prelamin A protein called progerin. Because farnesylation process had been shown to control progerin toxicity, in this study we have developed a screening method permitting to identify new pharmacological inhibitors of farnesylation. For this, we have used the unique potential of pluripotent stem cells to have access to an unlimited and relevant biological resource and test 21,608 small molecules. This study identified several compounds, called monoaminopyrimidines, which target two key enzymes of the farnesylation process, farnesyl pyrophosphate synthase and farnesyl transferase, and rescue in vitro phenotypes associated with HGPS. Our results opens up new therapeutic possibilities for the treatment of HGPS by identifying a new family of protein farnesylation inhibitors, and which may also be applicable to cancers and diseases associated with mutations that involve farnesylated proteins.


Blondel S.,University of Évry Val d'Essonne | Jaskowiak A.-L.,Institute for Stem Cell Therapy and Exploration of Monogenic Diseases | Egesipe A.-L.,University of Évry Val d'Essonne | Le Corf A.,University of Évry Val d'Essonne | And 10 more authors.
Stem Cells Translational Medicine | Year: 2014

Hutchinson-Gilford progeria syndrome is a rare congenital disease characterized by premature aging in children. Identification of the mutation and related molecular mechanisms has rapidly led to independent clinical trials testing different marketed drugs with a preclinically documented impact on those mechanisms. However, the extensive functional effects of those drugs remain essentially unexplored. We have undertaken a systematic comparative study of the three main treatments currently administered or proposed to progeria-affected children, namely, a farnesyltransferase inhibitor, the combination of an aminobisphosphonate and a statin (zoledronate and pravastatin), and the macrolide antibiotic rapamycin. This work was based on the assumption that mesodermal stem cells, which are derived from Hutchinson-Gilford progeria syndrome-induced pluripotent stem cells expressing major defects associated with the disease, may be instrumental to revealing such effects. Whereas all three treatments significantly improved misshapen cell nuclei typically associated with progeria, differences were observed in terms of functional improvement in prelamin A farnesylation, progerin expression, defective cell proliferation, premature osteogenic differentiation, and ATP production. Finally, we have evaluated the effect of the different drug combinations on this cellular model. This study revealed no additional benefit compared with single-drug treatments, whereas a cytostatic effect equivalent to that of a farnesyltransferase inhibitor alone was systematically observed. Altogether, these results reveal the complexity of the modes of action of different drugs, even when they have been selected on the basis of a similar mechanistic hypothesis, and underscore the use of induced pluripotent stem cell derivatives as a critical and powerful tool for standardized, comparative pharmacological studies. © AlphaMed Press.


PubMed | Institute for Stem cell Therapy and Exploration of Monogenic diseases, Aix - Marseille University and University of Coimbra
Type: | Journal: Scientific reports | Year: 2016

Hutchinson-Gilford progeria syndrome (HGPS) is a rare fatal genetic disorder that causes systemic accelerated aging in children. Thanks to the pluripotency and self-renewal properties of induced pluripotent stem cells (iPSC), HGPS iPSC-based modeling opens up the possibility of access to different relevant cell types for pharmacological approaches. In this study, 2800 small molecules were explored using high-throughput screening, looking for compounds that could potentially reduce the alkaline phosphatase activity of HGPS mesenchymal stem cells (MSCs) committed into osteogenic differentiation. Results revealed seven compounds that normalized the osteogenic differentiation process and, among these, all-trans retinoic acid and 13-cis-retinoic acid, that also decreased progerin expression. This study highlights the potential of high-throughput drug screening using HGPS iPS-derived cells, in order to find therapeutic compounds for HGPS and, potentially, for other aging-related disorders.


Mangeot P.-E.,University of Lyon | Dollet S.,University of Lyon | Girard M.,Institute for Stem Cell Therapy and Exploration of Monogenic Diseases | Ciancia C.,University of Lyon | And 3 more authors.
Molecular Therapy | Year: 2011

Identification of new techniques to express proteins into mammal cells is of particular interest for both research and medical purposes. The present study describes the use of engineered vesicles to deliver exogenous proteins into human cells. We show that overexpression of the spike glycoprotein of the vesicular stomatitis virus (VSV-G) in human cells induces the release of fusogenic vesicles named gesicles. Biochemical and functional studies revealed that gesicles incorporated proteins from producer cells and could deliver them to recipient cells. This protein-transduction method allows the direct transport of cytoplasmic, nuclear or surface proteins in target cells. This was demonstrated by showing that the TetR transactivator and the receptor for the murine leukemia virus (MLV) envelope murine cationic amino acid transporter-1 (mCAT-1) were efficiently delivered by gesicles in various cell types. We further shows that gesicle-mediated transfer of mCAT-1 confers to human fibroblasts a robust permissiveness to ecotropic vectors, allowing the generation of human-induced pluripotent stem cells in level 2 biosafety facilities. This highlights the great potential of mCAT-1 gesicles to increase the safety of experiments using retro/lentivectors. Besides this, gesicles is a versatile tool highly valuable for the nongenetic delivery of functions such as transcription factors or genome engineering agents. © 2011 The American Society of Gene & Cell Therapy.


Lo Cicero A.,French Institute of Health and Medical Research | Lo Cicero A.,Institute for Stem cell Therapy and Exploration of Monogenic diseases | Nissan X.,French Institute of Health and Medical Research | Nissan X.,Institute for Stem cell Therapy and Exploration of Monogenic diseases
Ageing Research Reviews | Year: 2015

Progeria, or Hutchinson-Gilford progeria syndrome (HGPS), is a rare, fatal genetic disease characterized by an appearance of accelerated aging in children. This syndrome is typically caused by mutations in codon 608 (p.G608G) of the LMNA, leading to the production of a mutated form of lamin A precursor called progerin. In HGPS, progerin accumulates in cells causing progressive molecular defects, including nuclear shape abnormalities, chromatin disorganization, damage to DNA and delays in cell proliferation. Here we report how, over the past five years, pluripotent stem cells have provided new insights into the study of HGPS and opened new original therapeutic perspectives to treat the disease. © 2015 Elsevier B.V.


Denis J.A.,French Institute of Health and Medical Research | Gauthier M.,French Institute of Health and Medical Research | Rachdi L.,French Institute of Health and Medical Research | Aubert S.,Institute for Stem Cell Therapy and Exploration of Monogenic Diseases | And 10 more authors.
Journal of Cell Science | Year: 2013

Patients with myotonic dystrophy type 1 exhibit a diversity of symptoms that affect many different organs. Among these are cognitive dysfunctions, the origin of which has remained elusive, partly because of the difficulty in accessing neural cells. Here, we have taken advantage of pluripotent stem cell lines derived from embryos identified during a pre-implantation genetic diagnosis for mutant-gene carriers, to produce early neuronal cells. Functional characterization of these cells revealed reduced proliferative capacity and increased autophagy linked to mTOR signaling pathway alterations. Interestingly, loss of function of MBNL1, an RNA-binding protein whose function is defective in DM1 patients, resulted in alteration of mTOR signaling, whereas gain-of-function experiments rescued the phenotype. Collectively, these results provide a mechanism by which DM1 mutation might affect a major signaling pathway and highlight the pertinence of using pluripotent stem cells to study neuronal defects. © 2013. Published by The Company of Biologists Ltd.

Loading Institute for Stem Cell Therapy and Exploration of Monogenic Diseases collaborators
Loading Institute for Stem Cell Therapy and Exploration of Monogenic Diseases collaborators