Time filter

Source Type

Wipfler B.,Institute For Spezielle Zoologie And Evolutionsbiologie | Schneeberg K.,Institute For Spezielle Zoologie And Evolutionsbiologie | Loffler A.,Institute For Spezielle Zoologie And Evolutionsbiologie | Hunefeld F.,Institute For Spezielle Zoologie And Evolutionsbiologie | And 2 more authors.
Arthropod Structure and Development | Year: 2013

The morphological features of the third instar larva of the most important insect model, Drosophila melanogaster, are documented for the first time using a broad spectrum of modern morphological techniques. External structures of the body wall, the cephaloskeleton, and the musculature are described and illustrated. Additional information about other internal organs is provided. The systematic implications of the findings are discussed briefly. Internal apomorphic features of Brachycera and Cyclorrhapha are confirmed for Drosophila. Despite the intensive investigations of the phylogeny of the megadiverse Diptera, evolutionary reconstructions are still impeded by the scarcity of anatomical data for brachyceran larvae. The available morphological information for the life stages of three insect model organisms - D. melanogaster (Diptera, Drosophilidae), Manduca sexta (Lepidoptera, Sphingidae) and Tribolium castaneum (Coleoptera, Tenebrionidae) - is addressed briefly. The usefulness of a combination of traditional and innovative techniques for an optimized acquisition of anatomical data for different life stages is highlighted. © 2012 Elsevier Ltd.


Jaloszynski P.,Wrocław University | Hunefeld F.,Institute For Spezielle Zoologie And Evolutionsbiologie | Beutel R.G.,Institute For Spezielle Zoologie And Evolutionsbiologie
Arthropod Structure and Development | Year: 2012

We present the first study of the central nervous system of adult representatives of Scydmaeninae. Histological staining, scanning electron microscopy and computer-based 3D reconstruction techniques were used to document the shape and configuration of the major cephalic elements of the central nervous system and to explain its anomalies compared to other Coleoptera. For the first time we report the presence of cephalic glands in ant-like stone beetles: in Scydmaenus (Cholerus) hellwigii openings of voluminous glands are located near the occipital constriction and their secretion accumulates in a large cavity of the dorsal head region. In Scydmaenus (Cholerus) perrisi the proto-, deuto-, tritocerebrum and the suboesophageal ganglion together form a large and compact ganglionic mass around the anterior foregut in the retracted neck region of the head. We exclude miniaturization as the driving force of the observed modifications. Comparative study of the head anatomy of S. perrisi, S. hellwigii, Scydmaenus (s. str.) tarsatus, Scydmaenus (Parallomicrus) rufus and Neuraphes elongatulus suggests a possible evolutionary scenario. We propose an evolutionary reversal hypothesis, involving a) the displacement and concentration of the cephalic central nervous system induced by the development of glandular cavities of the head, followed by b) a reduction of the glandular structures, without a secondary relocation of the cephalic CNS. The interpretation of head modifications in Scydmaeninae in the light of such a scenario may turn out as important for the reconstruction of the phylogeny and evolution of this highly successful group of beetles. © 2011 Elsevier Ltd.


Jaloszynski P.,Wrocław University | Beutel R.G.,Institute For Spezielle Zoologie And Evolutionsbiologie
Arthropod Structure and Development | Year: 2012

We present the results of a morphological study of the labium and labial (premental) discs in Cephenniini, ant-like stone beetles feeding on oribatid mites. The discs are composed of a cuticular plate connected by a circumferential ring with the hypopharyngeal suspensorium. The discs have likely developed from the premental cuticle and from internal sclerotizations of the labium. The shape of the external plate can be changed from flat to concave and vice versa by contractions and relaxations of the labial muscles. Contractions result in a flat or only slightly concave shape whereas during relaxation the discs become strongly concave and adhere tightly to the captured mite. Once this is achieved, detaining of the prey is energy-free. Based on known hypotheses concerning the evolution of Oribatida and Staphylinidae, we exclude the possibility of a co-evolution of " proto-Cephenniini" with yet unarmored " proto-Oribatida" , and suggest three alternative scenarios: i) the predators co-evolved with a particular early lineage of Oribatida that has acquired the hard armor relatively recently; ii) ancestors of Cephenniini gradually shifted from feeding on other types of prey towards fully armored Oribatida; or iii) the labial discs have originally developed for functions not related to feeding. © 2012 Elsevier Ltd.


Jaloszynski P.,Wrocław University | Matsumura Y.,Institute For Spezielle Zoologie And Evolutionsbiologie | Beutel R.G.,Institute For Spezielle Zoologie And Evolutionsbiologie
Arthropod Structure and Development | Year: 2015

We compared the postabdominal architecture of Mastigini with extremely long ( Stenomastigus) or short ( Palaeostigus) aedeagus. A novel mode of copulation was discovered: males of Stenomastigus insert a paramere between the female's abdomen and elytra, and the intromission is stabilized by several structures of both sexes. The intrinsic aedeagal mechanism is indicated as responsible for inflating the endophallus, and the long flagellum does not penetrate the ductus spermathecae during copulation. The structure of the flagellum suggests that it is primarily responsible for the sperm transfer. Asymmetrical postabdominal rotators of the aedeagus were only found in Stenomastigus; they presumably facilitate the withdrawal of the genitalia; their origin as bundles separated from larger muscles is postulated. We discuss a scenario in which the evolution of elongated genitalia was facilitated by the lack of structural constraints and existing preadaptations. Benefits of stabilizing the copulation and intromission are indicated as the driving force for the evolution of extremely long aedeagi, while the short aedeagi might have the advantage of freedom of movements facilitating the initiation of copulation by males. Disruptive selection is suggested as a working hypothesis to further investigate mechanisms that have played a role in the evolution of genital structures of Mastigini. © 2014 Elsevier Ltd.


Wipfler B.,Institute For Spezielle Zoologie And Evolutionsbiologie | Courtney G.W.,Iowa State University | Craig D.A.,University of Alberta | Beutel R.G.,Institute For Spezielle Zoologie And Evolutionsbiologie
Journal of Morphology | Year: 2012

The larval head of Protanyderus was examined and documented using innovative techniques, with emphasis on internal structures. A chart listing all head muscles of dipteran larvae and other holometabolan groups is presented in the Supporting Information. The results are compared to conditions found in other nematoceran lineages. The larval head of Protanyderus is characterized mainly by plesiomorphic character states such as the complete and largely exposed head capsule, the long coronal suture, V-shaped frontal sutures, lateral antennal insertion areas, a transverse labrum, a nearly horizontal plane of mandibular movements, mandibles lacking a movable distal part, a mesal hook and mesal or distal combs, separated maxillary endite lobes, a comparatively complete array of muscles, and a brain only partly located within the head capsule. An anteriorly toothed hypostomal plate and dense labral brushes of microtrichiae are also likely groundplan features of Diptera. The pharyngeal filter is a possible apomorphy of Diptera excl. Deuterophlebiidae (or Deuterophlebiidae + Nymphomyiidae). The messors have also likely evolved early in the dipteran crown group but are absent in the groundplan. The phylogenetic interpretation of externolateral plates with growth lines is ambiguous. Autapomorphies of Tanyderidae are differences between the third and fourth instar larvae, the roof-like extension above the antennal insertion area, the dorsal endocarina, and the posterodorsal internal ridge. The phylogenetic position of Tanyderidae is controversial, but features of the larval head do not support a proposed sistergroup relationship between Tanyderidae and Psychodidae. Both groups differ in many features of the larval head, and we did not identify a single potential synapomorphy. Larval characters alone are insufficient for a reliable phylogenetic reconstruction, though they vary greatly and apparently contain phylogenetic information. The evaluation of these features in the context of robust molecular phylogenies will be a sound basis for the reconstruction of complex evolutionary scenarios for the megadiverse Diptera. © 2012 Wiley Periodicals, Inc.


Polilov A.A.,Moscow State University | Beutel R.G.,Institute For Spezielle Zoologie And Evolutionsbiologie
Arthropod Structure and Development | Year: 2010

The first detailed morphological study of larvae, pupae and adults of a species of the hooded beetles (Coleoptera: Corylophidae) - Sericoderus lateralis - is presented. Histological sectioning, scanning and transmission electron microscopy, laser confocal microscopy and 3D-computer reconstruction were used. For the first time we report that according to the morphometric data of S. lateralis, at least some corylophid beetles have three larval stages. A phylogenetic position of Corylophidae within a cucujoid-cleroid clade is confirmed, and also the placement of Sericoderini within a corlyophid subgroup, which does not include Periptycinae and Foadiini. The larvae of Sericoderus are mainly characterized by plesiomorphic features compared to those of other corylophid tribes, notably Peltinodini and Rypobiini. Morphological and developmental consequences of miniaturization are discussed. Corylophid beetles display much less specific and far-reaching morphological consequences of miniaturization compared to Ptiliidae. We report the presence of unique modifications in the neural system not shared with any other insects, such as a distinctly asymmetric supraoesophageal ganglion in first instar larva, and a total displacement of the brain to the thorax in the adult stage. A highly unusual feature of the digestive tract is the sclerotised, V-shaped ventral wall of the pharynx. Developmental and size dependent changes in the relative volume of different organs are addressed. All organ systems change allometrically in the development of S. lateralis. Allometric trends in the volume of organs confirm that the factors limiting miniaturization are the size of the neural system, associated with the number and size of neurons (most critical for first instar larva), the mass of the skeleton, the egg size, and consequently the volume of the reproductive system (for free-living insects). © 2009 Elsevier Ltd. All rights reserved.


Beutel R.G.,Institute For Spezielle Zoologie And Evolutionsbiologie | Zimmermann D.,Naturhistorisches Museum Wien | Krauss M.,Institute For Spezielle Zoologie And Evolutionsbiologie | Randolf S.,Naturhistorisches Museum Wien | Wipfler B.,Institute For Spezielle Zoologie And Evolutionsbiologie
Organisms Diversity and Evolution | Year: 2010

External and internal head structures of Osmylus fulvicephalus were examined and described in detail. Exoand endoskeleton, musculature, elements of the central nervous system and tracheae are compared to conditions found in other groups of Neuropterida and other endopterygote lineages. Thirty-six adult cephalic characters were compiled, combined in a datamatrix with 64 characters of the larval head, and analysed cladistically. Mainly because many data on adults remain missing, most branches in the cladogram are mostly or exclusively supported by larval features. The shortening of the mesal mandibular wall and the resulting anterior shift of the adductor tendon possibly constitute an adult groundplan apomorphy of Neuropterida. Raphidioptera and Megaloptera share distinct prognathism and the presence of a sclerotised gula. However, the orthognathous head and the absence of a gula resulted as autapomorphies of Neuroptera in our analyses. Further potential autapomorphies are the asymmetry of the mandibles as well as the respective presence of dorsolateral furrows on the head capsule, of a shovel-like extension on the ventral mandibular cutting edge, and of a row of stiff hairs on the mandible's ventral surface. The systematic affinities of Osmylidae remain ambiguous. Osmylus is mainly characterised by plesiomorphic features of the adult head such as a complete endoskeleton, long filiform antennae, largely unmodified orthopteroid mouthparts, and particularly the nearly complete set of muscles. The placement with a clade also comprising Hemerobiidae and Chrysopidae is poorly supported. The presence of a dense vestiture of long microtrichia on the distal galeomere resulted as a synapomorphy of the three families. An apparent plesiomorphy preserved in Osmylus but absent in all other groups of Neuroptera is the presence of well developed ocelli. The present study underlines the severe shortage of detailed morphological data on the adults. Intensive study of adult structures is required for a solid reconstruction of the phylogeny of Neuropterida, especially of the hemerobiform lineage of Neuroptera. © Gesellschaft für Biologische Systematik 2010.


Schneeberg K.,Institute For Spezielle Zoologie And Evolutionsbiologie | Beutel R.G.,Institute For Spezielle Zoologie And Evolutionsbiologie
Acta Zoologica | Year: 2011

Head structures of adults of Tipula paludosa, Limonia sp. and Trichocera saltator were examined and described. The results are compared with conditions found in other dipterans and other antliophoran groups, notably Nannochoristidae. Several potential synapomorphies of a dipteran-nannomecopteran-siphonapteran clade are present in Tipuloidea and Trichocera, the labro-epipharyngeal food channel, the loss of the galea and the postpharyngeal pumping apparatus. The sensorial field of the maxillary palpomere 3, a potential dipteran-nannomecopteran synapomorphy, is also present but modified. The presence of M. clypeolabralis, labellae and mandibular stylets are groundplan apomorphies of Diptera, with secondary loss of the mandibles in Tipuloidea, Trichoceridae and many other groups. Tipuloidea is supported by the origin of M. tentorioscapalis anterior on the head capsule, the reduction of M. frontobuccalis anterior and the loss of the ocelli. The reduced tentorium, the origin of two further antennal muscles on the head capsule, the maxillary sensorial field with sensilla in individual pits, the lacking dorsal prelabial concavity and the unpaired salivary channel entering the head are apomorphies of Tipulidae. Closer affinities of Tipulidae and Cylindrotomidae are suggested by pseudotracheae of the advanced type, which have evolved independently in this lineage. The results do neither support a basal placement of Tipuloidea nor close affinities with Brachycera. © 2010 The Royal Swedish Academy of Sciences.


PubMed | Wrocław University and Institute For Spezielle Zoologie And Evolutionsbiologie
Type: Journal Article | Journal: Arthropod structure & development | Year: 2015

We compared the postabdominal architecture of Mastigini with extremely long (Stenomastigus) or short (Palaeostigus) aedeagus. A novel mode of copulation was discovered: males of Stenomastigus insert a paramere between the females abdomen and elytra, and the intromission is stabilized by several structures of both sexes. The intrinsic aedeagal mechanism is indicated as responsible for inflating the endophallus, and the long flagellum does not penetrate the ductus spermathecae during copulation. The structure of the flagellum suggests that it is primarily responsible for the sperm transfer. Asymmetrical postabdominal rotators of the aedeagus were only found in Stenomastigus; they presumably facilitate the withdrawal of the genitalia; their origin as bundles separated from larger muscles is postulated. We discuss a scenario in which the evolution of elongated genitalia was facilitated by the lack of structural constraints and existing preadaptations. Benefits of stabilizing the copulation and intromission are indicated as the driving force for the evolution of extremely long aedeagi, while the short aedeagi might have the advantage of freedom of movements facilitating the initiation of copulation by males. Disruptive selection is suggested as a working hypothesis to further investigate mechanisms that have played a role in the evolution of genital structures of Mastigini.


PubMed | Institute For Spezielle Zoologie And Evolutionsbiologie
Type: Journal Article | Journal: Arthropod structure & development | Year: 2012

The morphological features of the third instar larva of the most important insect model, Drosophila melanogaster, are documented for the first time using a broad spectrum of modern morphological techniques. External structures of the body wall, the cephaloskeleton, and the musculature are described and illustrated. Additional information about other internal organs is provided. The systematic implications of the findings are discussed briefly. Internal apomorphic features of Brachycera and Cyclorrhapha are confirmed for Drosophila. Despite the intensive investigations of the phylogeny of the megadiverse Diptera, evolutionary reconstructions are still impeded by the scarcity of anatomical data for brachyceran larvae. The available morphological information for the life stages of three insect model organisms -D. melanogaster (Diptera, Drosophilidae), Manduca sexta (Lepidoptera, Sphingidae) and Tribolium castaneum (Coleoptera, Tenebrionidae) - is addressed briefly. The usefulness of a combination of traditional and innovative techniques for an optimized acquisition of anatomical data for different life stages is highlighted.

Loading Institute For Spezielle Zoologie And Evolutionsbiologie collaborators
Loading Institute For Spezielle Zoologie And Evolutionsbiologie collaborators