Institute for Resistance Research and Stress Tolerance

Quedlinburg, Germany

Institute for Resistance Research and Stress Tolerance

Quedlinburg, Germany
Time filter
Source Type

Gardiner S.E.,The New Zealand Institute for Plant and Food Research Ltd | Norelli J.L.,U.S. Department of Agriculture | Silva N.D.,Auckland Mail Center | Fazio G.,U.S. Department of Agriculture | And 13 more authors.
BMC Genetics | Year: 2012

Background: Breeding of fire blight resistant scions and rootstocks is a goal of several international apple breeding programs, as options are limited for management of this destructive disease caused by the bacterial pathogen Erwinia amylovora. A broad, large-effect quantitative trait locus (QTL) for fire blight resistance has been reported on linkage group 3 of Malus 'Robusta 5'. In this study we identified markers derived from putative fire blight resistance genes associated with the QTL by integrating further genetic mapping studies with bioinformatics analysis of transcript profiling data and genome sequence databases.Results: When several defined E.amylovora strains were used to inoculate three progenies from international breeding programs, all with 'Robusta 5' as a common parent, two distinct QTLs were detected on linkage group 3, where only one had previously been mapped. In the New Zealand 'Malling 9' X 'Robusta 5' population inoculated with E. amylovora ICMP11176, the proximal QTL co-located with SNP markers derived from a leucine-rich repeat, receptor-like protein ( MxdRLP1) and a closely linked class 3 peroxidase gene. While the QTL detected in the German 'Idared' X 'Robusta 5' population inoculated with E. amylovora strains Ea222_JKI or ICMP11176 was approximately 6 cM distal to this, directly below a SNP marker derived from a heat shock 90 family protein gene ( HSP90). In the US 'Otawa3' X 'Robusta5' population inoculated with E. amylovora strains Ea273 or E2002a, the position of the LOD score peak on linkage group 3 was dependent upon the pathogen strains used for inoculation. One of the five MxdRLP1 alleles identified in fire blight resistant and susceptible cultivars was genetically associated with resistance and used to develop a high resolution melting PCR marker. A resistance QTL detected on linkage group 7 of the US population co-located with another HSP90 gene-family member and a WRKY transcription factor previously associated with fire blight resistance. However, this QTL was not observed in the New Zealand or German populations.Conclusions: The results suggest that the upper region of 'Robusta 5' linkage group 3 contains multiple genes contributing to fire blight resistance and that their contributions to resistance can vary depending upon pathogen virulence and other factors. Mapping markers derived from putative fire blight resistance genes has proved a useful aid in defining these QTLs and developing markers for marker-assisted breeding of fire blight resistance. © 2012 Gardiner et al.; licensee BioMed Central Ltd.

Schubert J.,Institute for Biosafety in Plant Biotechnology | Habekuss A.,Institute for Resistance Research and Stress Tolerance | Wu B.,Chinese Academy of Agricultural Sciences | Thieme T.,BTL Bio Test Labor GmbH Sagerheide | Wang X.,Chinese Academy of Agricultural Sciences
Virus Genes | Year: 2014

Recently, the importance of the Geminiviruses infecting cereal crops has been appreciated, and they are now being studied in detail. Barley and wheat strains of Wheat dwarf virus are recorded in most European countries. Information on complete sequences of isolates from the United Kingdom, Spain, and Austria are reported here for the first time. Analysis revealed that their sequences are very stable. Recombination between strains was recorded only for the barley strain. We identified several defective forms of the barley strain from barley and wheat, which do not influence symptom expression. Sequences of barley isolates infecting wheat were obtained that did not differ from the isolates from barley. Based on specific features of the SIR of the barley strains, it is suggested that they are assigned to one of the two proposed new clusters, A1 or A2. © Springer Science+Business Media New York 2013.

PubMed | University of Padua, University of Natural Resources and Life Sciences, Vienna, Saatzucht Streng Engelen GmbH & Co. KG, University of Hohenheim and 17 more.
Type: | Journal: Plant, cell & environment | Year: 2017

Soybean cultivation holds great potential for a sustainable agriculture in Europe, but adaptation remains a central issue. In this large mega-environment (MEV) study, 75 European cultivars from five early maturity groups (MGs 000 - II) were evaluated for maturity related traits at 22 locations in 10 countries across Europe. Clustering of the locations based on phenotypic similarity revealed six mega-environments in latitudinal direction and suggested several more. Analysis of maturity identified several groups of cultivars with phenotypic similarity that are optimally adapted to the different growing regions in Europe. We identified several haplotypes for the allelic variants at the E1, E2, E3 and E4 genes, with each E haplotype comprising cultivars from different MGs. Cultivars with the same E haplotype can exhibit different flowering and maturity characteristics, suggesting that the genetic control of these traits is more complex and that adaptation involves additional genetic pathways, for example temperature requirement. Taken together, our study allowed the first unified assessment of soybean growing regions in Europe and illustrates the strong effect of photoperiod on soybean adaptation and MEV classification, as well as the effects of the E maturity loci for soybean adaptation in Europe. This article is protected by copyright. All rights reserved.

PubMed | John Innes Center, Bioplante Florimond Desprez, University of Saskatchewan, Saaten Union Biotec GmbH and 9 more.
Type: Journal Article | Journal: TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik | Year: 2016

SNP markers were developed for the OWBM resistance gene Sm1 that will be useful for MAS. The wheat Sm1 region is collinear with an inverted syntenic interval in B. distachyon. Orange wheat blossom midge (OWBM, Sitodiplosis mosellana Ghin) is an important insect pest of wheat (Triticum aestivum) in many growing regions. Sm1 is the only described OWBM resistance gene and is the foundation of managing OWBM through host genetics. Sm1 was previously mapped to wheat chromosome arm 2BS relative to simple sequence repeat (SSR) markers and the dominant, sequence characterized amplified region (SCAR) marker WM1. The objectives of this research were to saturate the Sm1 region with markers, develop improved markers for marker-assisted selection (MAS), and examine the synteny between wheat, Brachypodium distachyon, and rice (Oryza sativa) in the Sm1 region. The present study mapped Sm1 in four populations relative to single nucleotide polymorphisms (SNPs), SSRs, Diversity Array Technology (DArT) markers, single strand conformation polymorphisms (SSCPs), and the SCAR WM1. Numerous high quality SNP assays were designed that mapped near Sm1. BLAST delineated the syntenic intervals in B. distachyon and rice using gene-based SNPs as query sequences. The Sm1 region in wheat was inverted relative to B. distachyon and rice, which suggests a chromosomal rearrangement within the Triticeae lineage. Seven SNPs were tested on a collection of wheat lines known to carry Sm1 and not to carry Sm1. Sm1-flanking SNPs were identified that were useful for predicting the presence or absence of Sm1 based upon haplotype. These SNPs will be a major improvement for MAS of Sm1 in wheat breeding programs.

PubMed | Institute for Biosafety in Plant Biotechnology, Chinese Academy of Agricultural Sciences, Shiraz University and Institute for Resistance Research and Stress Tolerance
Type: | Journal: Virus genes | Year: 2016

Wheat dwarf virus (WDV) adversely affects cereal production in Asia, Europe, and North Africa. In this study, sequences of several WDV isolates from Iran which is located in the Fertile Crescent were analyzed. Analysis revealed a new geographic cluster for WDV-Wheat from Iran. Recombination analysis demonstrated the existence of several breakpoints in different regions of the viral genome. Data analysis demonstrated that WDV-Barley has an older history and lower diversity than WDV-Wheat. Sequence analysis identified a rare occasion of a co-infection of wheat with WDV-Wheat and WDV-Barley.

Wu B.,Chinese Academy of Agricultural Sciences | Shang X.,Chinese Academy of Agricultural Sciences | Schubert J.,Institute for Biosafety in Plant Biotechnology | Habekuss A.,Institute for Resistance Research and Stress Tolerance | And 3 more authors.
Scientific Reports | Year: 2015

Genetic diversity and recombination patterns were evaluated for 229 isolates of Wheat dwarf virus (WDV), which are important cereal-infecting geminiviruses. Recombination hot spots were concentrated at the boundary of the genes encoding for the replication protein (Rep), the coat protein (cp) and the movement protein (mp), as well as inside Rep and cp and in the short intergenic regions (SIR). Phylogenomic analyses confirmed that the global population of WDV clustered into two groups according to their specific host: wheat and barley, and the crucial regions for the division of two groups were mp and the large intergenic regions (LIR). The computationally inferred pattern of coevolution between amino acid residues and the predicted 3D structure for the viral proteins provided further differences among the strains or species at the genome and protein level. Pervasive interaction between Rep and Rep A proteins in WDV-wheat-specific group reflected their important and complex function in the replication and transcription of WDV. Furthermore, significant predicted interactions between CP and Rep and CP and Rep A proteins in the WDV-wheat-specific group are thought to be crucial for successful encapsidation and movement of the virus during infection.

PubMed | Rothamsted Research, Institute for Resistance Research and Stress Tolerance and Leibniz Institute of Plant Genetics and Crop Plant Research
Type: Journal Article | Journal: TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik | Year: 2016

Two distinct patterns of sequence diversity for the recessive alleles of two host factors HvPDIL5 - 1 and HvEIF4E indicated the adaptive selection for bymovirus resistance in cultivated barley from East Asia. Plant pathogens are constantly challenging plant fitness and driving resistance gene evolution in host species. Little is known about the evolution of sequence diversity in host recessive resistance genes that interact with plant viruses. Here, by combining previously published and newly generated targeted re-sequencing information, we systematically analyzed natural variation in a broad collection of wild (Hordeum spontaneum; Hs) and domesticated barleys (Hordeum vulgare; Hv) using the full-length coding sequence of the two host factor genes, HvPDIL5-1 and HvEIF4E, conferring recessive resistance to the agriculturally important Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV). Interestingly, two types of gene evolution conferred by sequence variation in domesticated barley, but not in wild barley were observed. Whereas resistance-conferring alleles of HvEIF4E exclusively contained non-synonymous amino acid substitutions (including in-frame sequence deletions and insertions), loss-of-function alleles were predominantly responsible for the HvPDIL5-1 conferred bymovirus resistance. A strong correlation between the geographic origin and the frequency of barley accessions carrying resistance-conferring alleles was evident for each of the two host factor genes, indicating adaptive selection for bymovirus resistance in cultivated barley from East Asia.

Meyer N.,Institute for Resistance Research and Stress Tolerance | Lind V.,Institute for Resistance Research and Stress Tolerance | Karlovsky P.,University of Gottingen | Zahn M.,Institute for Resistance Research and Stress Tolerance | And 3 more authors.
Plant Breeding | Year: 2011

Eyespot, caused by Oculimacula acuformis and O. yallundae, is an important disease of wheat (Triticum aestivum). The two pathogens generate similar symptoms and cannot be distinguished visually. In order to distinguish O. acuformis and O. yallundae infections and to identify reliable quantitative differences in the level of resistance of wheat genotypes, two SYBR Green based real-time PCR assays were developed. The influence of time after inoculation until sample collection, the effect of species (O. acuformis, O. yallundae), and the relevance of wheat cultivars carrying Pch1, Pch2, or none of the resistance genes on the pathogen-DNA content were analysed. The most clear-cut difference of pathogen content between resistant and susceptible wheat genotypes was obtained 12weeks after inoculation with O. yallundae. Growth chamber tests using artificial inoculation with O. yallundae and sampling 12weeks after inoculation for real-time PCR is shown to be a reliable procedure to determine the resistance level of wheat against eyespot. Likewise, this is the basis for the development of efficient molecular markers. © 2010 Blackwell Verlag GmbH.

Galal A.,University of Kiel | Sharma S.,University of Kiel | Sharma S.,Urbana University | Abou-Elwafa S.F.,University of Kiel | And 5 more authors.
Theoretical and Applied Genetics | Year: 2014

Key message: This study demonstrates for the first time that resistance to different root lesion nematodes (P. neglectus and P. penetrans) is controlled by a common QTL. A major resistance QTL (Rlnnp6H) has been mapped to chromosome 6H using two independent barley populations. Root lesion nematodes (Pratylenchus spp.) are important pests in cereal production worldwide. We selected two doubled haploid populations of barley (Igri × Franka and Uschi × HHOR 3073) and infected them with Pratylenchus penetrans and Pratylenchus neglectus. Nematode multiplication rates were measured 7 or 10 weeks after infection. In both populations, continuous phenotypic variations for nematode multiplication rates were detected indicating a quantitative inheritance of resistance. In the Igri × Franka population, four P. penetrans resistance QTLs were mapped with 857 molecular markers on four linkage groups (2H, 5H, 6H and 7H). In the Uschi × HHOR 3073 population, eleven resistance QTLs (P. penetrans and P. neglectus) were mapped with 646 molecular markers on linkage groups 1H, 3H, 4H, 5H, 6H and 7H. A major resistance QTL named Rlnnp6H (LOD score 6.42-11.19) with a large phenotypic effect (27.5-36.6 %) for both pests was mapped in both populations to chromosome 6H. Another resistance QTL for both pests was mapped on linkage group 5H (Igri × Franka population). These data provide first evidence for common resistance mechanisms against different root lesion nematode species. The molecular markers are a powerful tool for the selection of resistant barley lines among segregating populations because resistance tests are time consuming and laborious. © 2014 Springer-Verlag Berlin Heidelberg.

Loading Institute for Resistance Research and Stress Tolerance collaborators
Loading Institute for Resistance Research and Stress Tolerance collaborators