Interdisciplinary Institute for Neuroscience

Bordeaux, France

Interdisciplinary Institute for Neuroscience

Bordeaux, France

Time filter

Source Type

Jayachandran R.,University of Basel | Liu X.,University of Basel | BoseDasgupta S.,University of Basel | Muller P.,University of Basel | And 23 more authors.
PLoS Biology | Year: 2014

Cognitive and behavioral disorders are thought to be a result of neuronal dysfunction, but the underlying molecular defects remain largely unknown. An important signaling pathway involved in the regulation of neuronal function is the cyclic AMP/Protein kinase A pathway. We here show an essential role for coronin 1, which is encoded in a genomic region associated with neurobehavioral dysfunction, in the modulation of cyclic AMP/PKA signaling. We found that coronin 1 is specifically expressed in excitatory but not inhibitory neurons and that coronin 1 deficiency results in loss of excitatory synapses and severe neurobehavioral disabilities, including reduced anxiety, social deficits, increased aggression, and learning defects. Electrophysiological analysis of excitatory synaptic transmission in amygdala revealed that coronin 1 was essential for cyclic-AMP-protein kinase A-dependent presynaptic plasticity. We further show that upon cell surface stimulation, coronin 1 interacted with the G protein subtype Gαs to stimulate the cAMP/PKA pathway. The absence of coronin 1 or expression of coronin 1 mutants unable to interact with Gαs resulted in a marked reduction in cAMP signaling. Strikingly, synaptic plasticity and behavioral defects of coronin 1-deficient mice were restored by in vivo infusion of a membrane-permeable cAMP analogue. Together these results identify coronin 1 as being important for cognition and behavior through its activity in promoting cAMP/PKA-dependent synaptic plasticity and may open novel avenues for the dissection of signal transduction pathways involved in neurobehavioral processes. © 2014 Jayachandran et al.


Murphy-Royal C.,Neurocentre Magendie | Murphy-Royal C.,Interdisciplinary Institute for Neuroscience | Dupuis J.P.,University of Bordeaux 1 | Dupuis J.P.,Interdisciplinary Institute for Neuroscience | And 12 more authors.
Nature Neuroscience | Year: 2015

Control of the glutamate time course in the synapse is crucial for excitatory transmission. This process is mainly ensured by astrocytic transporters, high expression of which is essential to compensate for their slow transport cycle. Although molecular mechanisms regulating transporter intracellular trafficking have been identified, the relationship between surface transporter dynamics and synaptic function remains unexplored. We found that GLT-1 transporters were highly mobile on rat astrocytes. Surface diffusion of GLT-1 was sensitive to neuronal and glial activities and was strongly reduced in the vicinity of glutamatergic synapses, favoring transporter retention. Notably, glutamate uncaging at synaptic sites increased GLT-1 diffusion, displacing transporters away from this compartment. Functionally, impairing GLT-1 membrane diffusion through cross-linking in vitro and in vivo slowed the kinetics of excitatory postsynaptic currents, indicative of a prolonged time course of synaptic glutamate. These data provide, to the best of our knowledge, the first evidence for a physiological role of GLT-1 surface diffusion in shaping synaptic transmission. © 2015 Nature America, Inc. All rights reserved.


Morel M.,University Pierre and Marie Curie | Shynkar V.,University Pierre and Marie Curie | Shynkar V.,Interdisciplinary Institute for Neuroscience | Galas J.-C.,University Pierre and Marie Curie | And 6 more authors.
Biophysical Journal | Year: 2012

Nerve growth cones (GCs) are chemical sensors that convert graded extracellular cues into oriented axonal motion. To ensure a sensitive and robust response to directional signals in complex and dynamic chemical landscapes, GCs are presumably able to amplify and filter external information. How these processing tasks are performed remains however poorly known. Here, we probe the signal-processing capabilities of single GCs during γ-Aminobutyric acid (GABA) directional sensing with a shear-free microfluidic assay that enables systematic measurements of the GC output response to variable input gradients. By measuring at the single molecule level the polarization of GABAA chemoreceptors at the GC membrane, as a function of the external GABA gradient, we find that GCs act as i), signal amplifiers over a narrow range of concentrations, and ii), low-pass temporal filters with a cutoff frequency independent of stimuli conditions. With computational modeling, we determine that these systems-level properties arise at a molecular level from the saturable occupancy response and the lateral dynamics of GABAA receptors. © 2012 Biophysical Society.


Hanus C.,Max Planck Institute for Brain Research | Kochen L.,Max Planck Institute for Brain Research | Tom Dieck S.,Max Planck Institute for Brain Research | Racine V.,Agency for Science, Technology and Research Singapore | And 3 more authors.
Cell Reports | Year: 2014

Localized signaling in neuronal dendrites requires tight spatial control of membrane composition. Upon initial synthesis, nascent secretory cargo in dendrites exits the endoplasmic reticulum (ER) from local zones of ER complexity that are spatially coupled to post-ER compartments. Although newly synthesized membrane proteins can be processed locally, the mechanisms that control the spatial range of secretory cargo transport in dendritic segments are unknown. Here, we monitored the dynamics of nascent membrane proteins in dendritic post-ER compartments under regimes of low or increased neuronal activity. In response to activity blockade, post-ER carriers are highly mobile and are transported over long distances. Conversely, increasing synaptic activity dramatically restricts the spatial scale of post-ER trafficking along dendrites. This activity-induced confinement of secretory cargo requires site-specific phosphorylation of the kinesin motor KIF17 by Ca2+/calmodulin-dependent protein kinases (CaMK). Thus, the length scales of early secretory trafficking in dendrites are tuned by activity-dependent regulation of microtubule-dependent transport. © 2014 The Authors.


PubMed | Pfizer, Agency for Science, Technology and Research Singapore, Interdisciplinary Institute for Neuroscience and Max Planck Institute for Brain Research
Type: Journal Article | Journal: Cell reports | Year: 2014

Localized signaling in neuronal dendrites requires tight spatial control of membrane composition. Upon initial synthesis, nascent secretory cargo in dendrites exits the endoplasmic reticulum (ER) from local zones of ER complexity that are spatially coupled to post-ER compartments. Although newly synthesized membrane proteins can be processed locally, the mechanisms that control the spatial range of secretory cargo transport in dendritic segments are unknown. Here, we monitored the dynamics of nascent membrane proteins in dendritic post-ER compartments under regimes of low or increased neuronal activity. In response to activity blockade, post-ER carriers are highly mobile and are transported over long distances. Conversely, increasing synaptic activity dramatically restricts the spatial scale of post-ER trafficking along dendrites. This activity-induced confinement of secretory cargo requires site-specific phosphorylation of the kinesin motor KIF17 by Ca(2+)/calmodulin-dependent protein kinases (CaMK). Thus, the length scales of early secretory trafficking in dendrites are tuned by activity-dependent regulation of microtubule-dependent transport.


Van T.N.N.,Interdisciplinary Institute for NeuroScience | Pellerano M.,Max Mousseron Institute of Biomolecules | Lykaso S.,Max Mousseron Institute of Biomolecules | Morris M.C.,Max Mousseron Institute of Biomolecules
ChemBioChem | Year: 2014

Cyclin-dependent kinases (CDKs) play an essential role in the coordination of cell cycle progression and transcriptional regulation; hyperactivation is associated with cancer. However there are few means of measuring their activity in a physiological context or their inhibition in response to therapeutics. To this aim we engineered a modular fluorescent protein biosensor that reports on phosphorylation by CDK/cyclins through real-time changes in fluorescence intensity. This allowed a comparison of enzymatic activity of recombinant kinases, monitoring inhibition by small molecules, and probing endogenous activities in lysates from healthy and cancer cell lines in a sensitive and quantitative fashion. This versatile tool was further implemented to probe the oscillatory activity of these kinases throughout the cell cycle by time-lapse imaging and ratiometric fluorescence quantification, following delivery of a red fluorescent protein fusion mediated by cell-penetrating peptides. © 2014 Wiley-VCH Verlag GmbH & Co. KGaA.


Szepesi Z.,Nencki Institute of Experimental Biology | Hosy E.,Interdisciplinary Institute for Neuroscience | Ruszczycki B.,Nencki Institute of Experimental Biology | Bijata M.,Nencki Institute of Experimental Biology | And 6 more authors.
PLoS ONE | Year: 2014

Synapses are particularly prone to dynamic alterations and thus play a major role in neuronal plasticity. Dynamic excitatory synapses are located at the membranous neuronal protrusions called dendritic spines. The ability to change synaptic connections involves both alterations at the morphological level and changes in postsynaptic receptor composition. We report that endogenous matrix metalloproteinase (MMP) activity promotes the structural and functional plasticity of local synapses by its effect on glutamate receptor mobility and content. We used live imaging of cultured hippocampal neurons and quantitative morphological analysis to show that chemical long-term potentiation (cLTP) induces the permanent enlargement of a subset of small dendritic spines in an MMP-dependent manner. We also used a superresolution microscopy approach and found that spine expansion induced by cLTP was accompanied by MMP-dependent immobilization and synaptic accumulation as well as the clustering of GluA1-containing AMPA receptors. Altogether, our results reveal novel molecular and cellular mechanisms of synaptic plasticity. © 2014 Szepesi et al.

Loading Interdisciplinary Institute for Neuroscience collaborators
Loading Interdisciplinary Institute for Neuroscience collaborators