Entity

Time filter

Source Type


Kamali Sarvestani I.,KTH Royal Institute of Technology | Kamali Sarvestani I.,Stockholm Brain Institute | Kozlov A.,KTH Royal Institute of Technology | Kozlov A.,Karolinska Institutet | And 7 more authors.
Biological Cybernetics | Year: 2013

This study addresses mechanisms for the generation and selection of visual behaviors in anamniotes. To demonstrate the function of these mechanisms, we have constructed an experimental platform where a simulated animal swims around in a virtual environment containing visually detectable objects. The simulated animal moves as a result of simulated mechanical forces between the water and its body. The undulations of the body are generated by contraction of simulated muscles attached to realistic body components. Muscles are driven by simulated motoneurons within networks of central pattern generators. Reticulospinal neurons, which drive the spinal pattern generators, are in turn driven directly and indirectly by visuomotor centers in the brainstem. The neural networks representing visuomotor centers receive sensory input from a simplified retina. The model also includes major components of the basal ganglia, as these are hypothesized to be key components in behavior selection. We have hypothesized that sensorimotor transformation in tectum and pretectum transforms the place-coded retinal information into rate-coded turning commands in the reticulospinal neurons via a recruitment network mimicking the layered structure of tectal areas. Via engagement of the basal ganglia, the system proves to be capable of selecting among several possible responses, even if exposed to conflicting stimuli. The anatomically based structure of the control system makes it possible to disconnect different neural components, yielding concrete predictions of how animals with corresponding lesions would behave. The model confirms that the neural networks identified in the lamprey are capable of responding appropriately to simple, multiple, and conflicting stimuli. © 2013 Springer-Verlag Berlin Heidelberg. Source


Perez C.T.,Nobel Institute for Neurophysiology | Hill R.H.,Nobel Institute for Neurophysiology | Grillner S.,Nobel Institute for Neurophysiology
PLoS ONE | Year: 2015

Substance P is endogenously released in the adult lamprey spinal cord and accelerates the burst frequency of fictive locomotion. This is achieved by multiple effects on interneurons and motoneurons, including an attenuation of calcium currents, potentiation of NMDA currents and reduction of the reciprocal inhibition. While substance P also depolarizes spinal cord neurons, the underlying mechanism has not been resolved. Here we show that effects of substance P on background K+ channels are the main source for this depolarization. Hyperpolarizing steps induced inward currents during whole-cell voltage clamp that were reduced by substance P. These background K+ channels are pH sensitive and are selectively blocked by anandamide and AVE1231. These blockers counteracted the effect of substance P on these channels and the resting membrane potential depolarization in spinal cord neurons. Thus, we have shown now that substance P inhibits background K+ channels that in turn induce depolarization, which is likely to contribute to the frequency increase observed with substance P during fictive locomotion. © 2015 Thörn Pérez et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Source

Discover hidden collaborations