Entity

Time filter

Source Type


Mueller N.,University of Wurzburg | Avota E.,University of Wurzburg | Collenburg L.,University of Wurzburg | Grassme H.,Institute for Molecular Biology | Schneider-Schaulies S.,University of Wurzburg
PLoS Pathogens | Year: 2014

T cell paralysis is a main feature of measles virus (MV) induced immunosuppression. MV contact mediated activation of sphingomyelinases was found to contribute to MV interference with T cell actin reorganization. The role of these enzymes in MV-induced inhibition of T cell activation remained equally undefined as their general role in regulating immune synapse (IS) activity which relies on spatiotemporal membrane patterning. Our study for the first time reveals that transient activation of the neutral sphingomyelinase 2 (NSM2) occurs in physiological co-stimulation of primary T cells where ceramide accumulation is confined to the lamellum (where also NSM2 can be detected) and excluded from IS areas of high actin turnover. Genetic ablation of the enzyme is associated with T cell hyper-responsiveness as revealed by actin dynamics, tyrosine phosphorylation, Ca2+-mobilization and expansion indicating that NSM2 acts to suppress overshooting T cell responses. In line with its suppressive activity, exaggerated, prolonged NSM2 activation as occurring in co-stimulated T cells following MV exposure was associated with aberrant compartmentalization of ceramides, loss of spreading responses, interference with accumulation of tyrosine phosphorylated protein species and expansion. Altogether, this study for the first time reveals a role of NSM2 in physiological T cell stimulation which is dampening and can be abused by a virus, which promotes enhanced and prolonged NSM2 activation to cause pathological T cell suppression. © 2014 Mueller et al. Source


Bennet M.,Max Planck Institute of Colloids and Interfaces | Akiva A.,Weizmann Institute of Science | Faivre D.,Max Planck Institute of Colloids and Interfaces | Malkinson G.,Weizmann Institute of Science | And 4 more authors.
Biophysical Journal | Year: 2014

Confocal Raman microspectroscopy and fluorescence imaging are two well-established methods providing functional insight into the extracellular matrix and into living cells and tissues, respectively, down to single molecule detection. In living tissues, however, cells and extracellular matrix coexist and interact. To acquire information on this cell-matrix interaction, we developed a technique for colocalized, correlative multispectral tissue analysis by implementing high-sensitivity, wide-field fluorescence imaging on a confocal Raman microscope. As a proof of principle, we study early stages of bone formation in the zebrafish (Danio rerio) larvae because the zebrafish has emerged as a model organism to study vertebrate development. The newly formed bones were stained using a calcium fluorescent marker and the maturation process was imaged and chemically characterized in vivo. Results obtained from early stages of mineral deposition in the zebrafish fin bone unequivocally show the presence of hydrogen phosphate containing mineral phases in addition to the carbonated apatite mineral. The approach developed here opens significant opportunities in molecular imaging of metabolic activities, intracellular sensing, and trafficking as well as in vivo exploration of cell-tissue interfaces under (patho-)physiological conditions. © 2014 The Authors. Source


Swarts D.C.,Wageningen University | Makarova K.,U.S. National Center for Biotechnology Information | Wang Y.,CAS Institute of Biophysics | Nakanishi K.,Ohio State University | And 4 more authors.
Nature Structural and Molecular Biology | Year: 2014

Argonaute proteins are conserved throughout all domains of life. Recently characterized prokaryotic Argonaute proteins (pAgos) participate in host defense by DNA interference, whereas eukaryotic Argonaute proteins (eAgos) control a wide range of processes by RNA interference. Here we review molecular mechanisms of guide and target binding by Argonaute proteins, and describe how the conformational changes induced by target binding lead to target cleavage. On the basis of structural comparisons and phylogenetic analyses of pAgos and eAgos, we reconstruct the evolutionary journey of the Argonaute proteins through the three domains of life and discuss how different structural features of pAgos and eAgos relate to their distinct physiological roles. © 2014 Nature America, Inc. Source


Luteijn M.J.,University Utrecht | Ketting R.F.,University Utrecht | Ketting R.F.,Institute for Molecular Biology
Nature Reviews Genetics | Year: 2013

Small-RNA-guided gene regulation is a recurring theme in biology. Animal germ cells are characterized by an intriguing small-RNA-mediated gene-silencing mechanism known as the PIWI pathway. For a long time, both the biogenesis of PIWI-interacting RNAs (piRNAs) as well as their mode of gene silencing has remained elusive. A recent body of work is shedding more light on both aspects and implicates PIWI in the establishment of transgenerational epigenetic states. In fact, the epigenetic states imposed by PIWI on targets may actually drive piRNA production itself. These findings start to couple small RNA biogenesis with small-RNA-mediated epigenetics. © 2013 Macmillan Publishers Limited. All rights reserved. Source


Charalambous M.,University of Cambridge | Ferron S.R.,University of Cambridge | Da Rocha S.T.,University of Cambridge | Murray A.J.,University of Cambridge | And 4 more authors.
Cell Metabolism | Year: 2012

Neonatal survival in mammals is crucially dependent upon maintenance of body temperature. Neonatal body temperature is largely maintained by thermogenesis in brown adipose tissue (BAT). BAT develops perinatally in mice requiring integration of adipogenic and thermoregulatory gene pathways. We describe a regulatory mutation in the imprinted gene cluster on mouse chromosome 12 resulting in early postnatal lethality. Maternal inheritance of this mutation impairs the ability of young mice to maintain body temperature. While mechanisms of perinatal BAT development are well understood, our work highlights a second phase of BAT recruitment necessary to support small animals newly independent of the nest. We show that the imprinted delta-like homolog 1/preadipocyte factor (Dlk1/Pref1) and iodothyronine deiodinase type 3 (Dio3) functions converge on the development of brown fat at the transition to independent life. This shows that appropriate dosage control at imprinted loci can act as a critical determinant in postnatal survival during phases of physiological adaptation. © 2012 Elsevier Inc. Source

Discover hidden collaborations