Institute for Molecular Biology and Cell Biology

Porto, Portugal

Institute for Molecular Biology and Cell Biology

Porto, Portugal
Time filter
Source Type

Fontenete S.,University of Porto | Fontenete S.,University of Southern Denmark | Carvalho D.,University of Porto | Lourenco A.,University of Vigo | And 7 more authors.
Biochemical Engineering Journal | Year: 2016

Fluorescence in situ hybridization (FISH) is based on the use of fluorescent staining dyes, however, the signal intensity of the images obtained by microscopy is seldom quantified with accuracy by the researcher. The development of innovative digital image processing programs and tools has been trying to overcome this problem, however, the determination of fluorescent intensity in microscopy images still has issues due to the lack of precision in the results and the complexity of existing software. This work presents FISHji, a set of new ImageJ methods for automated quantification of fluorescence in images obtained by epifluorescence microscopy. To validate the methods, results obtained by FISHji were compared with results obtained by flow cytometry. The mean correlation between FISHji and flow cytometry was high and significant, showing that the imaging methods are able to accurately assess the signal intensity of fluorescence images. FISHji are available for non-commercial use at © 2016 Elsevier B.V..

Fontenete S.,University of Porto | Fontenete S.,University of Southern Denmark | Fontenete S.,Epithelial Cell Biology Group | Carvalho D.,University of Porto | And 7 more authors.
Applied Microbiology and Biotechnology | Year: 2016

Fluorescence in situ hybridization (FISH) employing nucleic acid mimics as probes is becoming an emerging molecular tool in the microbiology area for the detection and visualization of microorganisms. However, the impact that locked nucleic acid (LNA) and 2′-O-methyl (2′-OMe) RNA modifications have on the probe that is targeting microorganisms is unknown. In this study, the melting and hybridization efficiency properties of 18 different probes in regards to their use in FISH for the detection of the 16S rRNA of Helicobacter pylori were compared. For the same sequence and target, probe length and the type of nucleic acid mimics used as mixmers in LNA-based probes strongly influence the efficiency of detection. LNA probes with 10 to 15 mers showed the highest efficiency. Additionally, the combination of 2′-OMe RNA with LNA allowed an increase on the fluorescence intensities of the probes. Overall, these results have significant implications for the design and applications of LNA probes for the detection of microorganisms. © 2016 Springer-Verlag Berlin Heidelberg

Silvia F.,University of Porto | Silvia F.,University of Southern Denmark | Joana B.,University of Porto | Joana B.,Institute Engineering Biomedica | And 5 more authors.
Applied Microbiology and Biotechnology | Year: 2015

In the past few years, several researchers have focused their attention on nucleic acid mimics due to the increasing necessity of developing a more robust recognition of DNA or RNA sequences. Fluorescence in situ hybridization (FISH) is an example of a method where the use of these novel nucleic acid monomers might be crucial to the success of the analysis. To achieve the expected accuracy in detection, FISH probes should have high binding affinity towards their complementary strands and discriminate effectively the noncomplementary strands. In this study, we investigate the effect of different chemical modifications in fluorescent probes on their ability to successfully detect the complementary target and discriminate the mismatched base pairs by FISH. To our knowledge, this paper presents the first study where this analysis is performed with different types of FISH probes directly in biological targets, Helicobacter pylori and Helicobacter acinonychis. This is also the first study where unlocked nucleic acids (UNA) were used as chemistry modification in oligonucleotides for FISH methodologies. The effectiveness in detecting the specific target and in mismatch discrimination appears to be improved using locked nucleic acids (LNA)/2′-O-methyl RNA (2′OMe) or peptide nucleic acid (PNA) in comparison to LNA/DNA, LNA/UNA, or DNA probes. Further, the use of LNA modifications together with 2′OMe monomers allowed the use of shorter fluorescent probes and increased the range of hybridization temperatures at which FISH would work. © 2015, Springer-Verlag Berlin Heidelberg.

Fontenete S.,University of Porto | Fontenete S.,University of Southern Denmark | Leite M.,University of Porto | Guimaraes N.,University of Porto | And 7 more authors.
PLoS ONE | Year: 2015

In recent years, there have been several attempts to improve the diagnosis of infection caused by Helicobacter pylori. Fluorescence in situ hybridization (FISH) is a commonly used technique to detect H. pylori infection but it requires biopsies from the stomach. Thus, the development of an in vivo FISH-based method (FIVH) that directly detects and allows the visualization of the bacterium within the human body would significantly reduce the time of analysis, allowing the diagnosis to be performed during endoscopy. In a previous study we designed and synthesized a phosphorothioate locked nucleic acid (LNA)/ 2′ O-methyl RNA (2′OMe) probe using standard phosphoramidite chemistry and FISH hybridization was then successfully performed both on adhered and suspended bacteria at 37°C. In this work we simplified, shortened and adapted FISH to work at gastric pH values, meaning that the hybridization step now takes only 30 minutes and, in addition to the buffer, uses only urea and probe at non-toxic concentrations. Importantly, the sensitivity and specificity of the FISH method was maintained in the range of conditions tested, even at low stringency conditions (e.g., low pH). In conclusion, this methodology is a promising approach that might be used in vivo in the future in combination with a confocal laser endomicroscope for H. pylori visualization. © 2015 Fontenete et al.

Loading Institute for Molecular Biology and Cell Biology collaborators
Loading Institute for Molecular Biology and Cell Biology collaborators