Time filter

Source Type

De Souza Apostolico J.,Federal University of São Paulo | Boscardin S.B.,University of Sao Paulo | Yamamoto M.M.,University of Sao Paulo | De Oliveira-Filho J.N.,Institute for Investigation in Immunology INCT | And 3 more authors.
PLoS ONE | Year: 2016

The development of a preventive vaccine against human immunodeficiency virus (HIV-1) infection is the most efficient method to control the epidemic. The ultimate goal is to develop a vaccine able to induce specific neutralizing, non-neutralizing antibodies and cellular mediated immunity (CMI). Humoral and CMI responses can be directed to glycoproteins that are normally presented as a trimeric spike on the virus surface (gp140). Despite safer, subunit vaccines are normally less immunogenic/effective and need to be delivered together with an adjuvant. The choice of a suitable adjuvant can induce effective humoral and CMI that utterly lead to full protection against disease. In this report, we established a hierarchy of adjuvant potency on humoral and CMI when admixed with the recombinant HIV gp140 trimer. We show that vaccination with gp140 in the presence of different adjuvants can induce high-Affinity antibodies, follicular helper T cells and germinal center B cells. The data show that poly (I:C) is the most potent adjuvant to induce specific CMI responses evidenced by IFN-production and CD4+/CD8+ T cell proliferation. Furthermore, we demonstrate that combining some adjuvants like MPL plus Alum and MPL plus MDP exert additive effects that impact on the magnitude and quality of humoral responses while mixing MDP with poly (I:C) or with R848 had no impact on total IgG titers but highly impact IgG subclass. In addition, heterologous DNA prime-protein boost yielded higher IgG titers when compare to DNA alone and improved the quality of humoral response when compare to protein immunization as evidenced by IgG1/IgG2a ratio. The results presented in this paper highlight the importance of selecting the correct adjuvant-Antigen combination to potentiate desired cells for optimal stimulation. © 2016 Apostólico et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Rosa D.S.,Federal University of São Paulo | Rosa D.S.,Institute for Investigation in Immunology INCT | Ribeiro S.P.,Institute for Investigation in Immunology INCT | Ribeiro S.P.,University of Sao Paulo | And 11 more authors.
AIDS Research and Human Retroviruses | Year: 2015

The development of a highly effective vaccine against the human immunodeficiency virus (HIV) will likely be based on rational vaccine design, since traditional vaccine approaches have failed so far. In recent years, an understanding of what type of immune response is protective against infection and/or disease facilitated vaccine design. T cell-based vaccines against HIV have the goal of limiting both transmission and disease progression by inducing broad and functionally relevant T cell responses. In this context, CD4+ T cells play a direct cytotoxic role and are also important for the generation and maintenance of functional CD8+ T and B cell responses. The use of MHC-binding algorithms has allowed the identification of novel CD4+ T cell epitopes that could be used in vaccine design, the so-called epitope-driven vaccine design. Epitope-based vaccines have the ability to focus the immune response on highly antigenic, conserved epitopes that are fully recognized by the target population. We have recently mapped a set of conserved multiple HLA-DR-binding HIV-1 CD4 epitopes and observed interferon (IFN)-γ-producing CD4+ T cells when we tested these peptides in peripheral blood mononuclear cells (PBMCs) from HIV-infected individuals. We then designed multiepitopic DNA vaccines that induced broad and polyfunctional T cell responses in immunized mice. In this review we will focus on alternative strategies to increase the immunogenicity of an epitope-based vaccine against HIV infection. © Copyright 2015, Mary Ann Liebert, Inc. 2015.


Ribeiro S.P.,University of Sao Paulo | Ribeiro S.P.,Institute for Investigation in Immunology INCT | Rosa D.S.,University of Sao Paulo | Rosa D.S.,Institute for Investigation in Immunology INCT | And 12 more authors.
PLoS ONE | Year: 2010

Current HIV vaccine approaches are focused on immunogens encoding whole HIV antigenic proteins that mainly elicit cytotoxic CD8+ responses. Mounting evidence points toward a critical role for CD4+ T cells in the control of immunodeficiency virus replication, probably due to cognate help. Vaccine-induced CD4+ T cell responses might, therefore, have a protective effect in HIV replication. In addition, successful vaccines may have to elicit responses to multiple epitopes in a high proportion of vaccinees, to match the highly variable circulating strains of HIV. Using rational vaccine design, we developed a DNA vaccine encoding 18 algorithm-selected conserved, "promiscuous" (multiple HLA-DR-binding) B-subtype HIV CD4 epitopes - previously found to be frequently recognized by HIV-infected patients. We assessed the ability of the vaccine to induce broad T cell responses in the context of multiple HLA class II molecules using different strains of HLA class II- transgenic mice (-DR2, -DR4, -DQ6 and -DQ8). Mice displayed CD4+ and CD8+ T cell responses of significant breadth and magnitude, and 16 out of the 18 encoded epitopes were recognized. By virtue of inducing broad responses against conserved CD4+ T cell epitopes that can be recognized in the context of widely diverse, common HLA class II alleles, this vaccine concept may cope both with HIV genetic variability and increased population coverage. The vaccine may thus be a source of cognate help for HIV-specific CD8+ T cells elicited by conventional immunogens, in a wide proportion of vaccinees. © 2010 Ribeiro et al.


Rosa D.S.,University of Sao Paulo | Rosa D.S.,Institute for Investigation in Immunology INCT | Rosa D.S.,Federal University of São Paulo | Ribeiro S.P.,University of Sao Paulo | And 10 more authors.
PLoS ONE | Year: 2011

T-cell based vaccines against HIV have the goal of limiting both transmission and disease progression by inducing broad and functionally relevant T cell responses. Moreover, polyfunctional and long-lived specific memory T cells have been associated to vaccine-induced protection. CD4+ T cells are important for the generation and maintenance of functional CD8+ cytotoxic T cells. We have recently developed a DNA vaccine encoding 18 conserved multiple HLA-DR-binding HIV-1 CD4 epitopes (HIVBr18), capable of eliciting broad CD4+ T cell responses in multiple HLA class II transgenic mice. Here, we evaluated the breadth and functional profile of HIVBr18-induced immune responses in BALB/c mice. Immunized mice displayed high-magnitude, broad CD4+/CD8+ T cell responses, and 8/18 vaccine-encoded peptides were recognized. In addition, HIVBr18 immunization was able to induce polyfunctional CD4+ and CD8+ T cells that proliferate and produce any two cytokines (IFNγ/TNFα, IFNγ/IL-2 or TNFα/IL-2) simultaneously in response to HIV-1 peptides. For CD4+ T cells exclusively, we also detected cells that proliferate and produce all three tested cytokines simultaneously (IFNγ/TNFα/IL-2). The vaccine also generated long-lived central and effector memory CD4+ T cells, a desirable feature for T-cell based vaccines. By virtue of inducing broad, polyfunctional and long-lived T cell responses against conserved CD4+ T cell epitopes, combined administration of this vaccine concept may provide sustained help for CD8+ T cells and antibody responses- elicited by other HIV immunogens. © 2011 Rosa et al.


Ribeiro S.P.,University of Sao Paulo | Ribeiro S.P.,Institute for Investigation in Immunology INCT | De Souza Apostolico J.,University of Sao Paulo | De Souza Apostolico J.,Federal University of São Paulo | And 9 more authors.
Trials in Vaccinology | Year: 2014

The development of an effective HIV vaccine is still a major scientific challenge. HIV vaccine trials conducted until now were not able to induce broad neutralizing antibodies or effective cell mediated immune responses. More recently, CD4+ T cells have been shown to play an important role in viral control and better disease prognosis. We have recently developed a DNA vaccine encoding 18 conserved multiple HLA-DR-binding HIV-1 CD4 epitopes (HIVBr18), capable of eliciting broad CD4+ T cell responses in BALB/c and in multiple HLA class II transgenic mice. Despite the advantages of DNA vaccines and a large number of clinical trials, it has been a challenge to transfer the success of inducing potent immunity observed in animal models to humans. Here, we sought to evaluate the potential use of bupivacaine, a local anesthetic, as an adjuvant for HIVBr18. We observed that the concomitant administration of the local anesthetic bupivacaine with the DNA vaccine HIVBr18 increased the magnitude of CD4+ and CD8+ T cell responses and cytokine production without compromising their breadth. Furthermore, we demonstrate that coadministration of bupivacaine also impacted the longevity of specific immune responses. Since bupivacaine is used in clinical settings, we believe that this concept may contribute to overcome the limited immunogenicity of DNA vaccines in humans. © 2014 The Authors. Published by Elsevier Ltd.


Almeida R.R.,University of Sao Paulo | Almeida R.R.,Institute for Investigation in Immunology INCT | Raposo R.A.S.,George Washington University | Coirada F.C.,University of Sao Paulo | And 7 more authors.
Immunology and Cell Biology | Year: 2015

DNA vaccines have failed to induce satisfactory immune responses in humans. Several mechanisms of double-stranded DNA (dsDNA) sensing have been described, and modulate DNA vaccine immunogenicity at many levels. We hypothesized that the immunogenicity of DNA vaccines in humans is suppressed by APOBEC (apolipoprotein B (APOB) mRNA-editing, catalytic polypeptide)-mediated plasmid degradation. We showed that plasmid sensing via STING (stimulator of interferon (IFN) genes) and TBK-1 (TANK-binding kinase 1) leads to IFN-β induction, which results in APOBEC3A mRNA upregulation through a mechanism involving protein kinase C signaling. We also showed that murine APOBEC2 expression in HEK293T cells led to a 10-fold reduction in intracellular plasmid levels and plasmid-encoded mRNA, and a 2.6-fold reduction in GFP-expressing cells. A bicistronic DNA vaccine expressing an immunogen and an APOBEC2-specific shRNA efficiently silenced APOBEC2 both in vitro and in vivo, increasing the frequency of induced IFN-γ-secreting T cells. Our study brings new insights into the intracellular machinery involved in dsDNA sensing and how to modulate it to improve DNA vaccine immunogenicity in humans. © 2015 Australasian Society for Immunology Inc. All rights reserved.


Luque M.C.A.,Heart Institute of Sao Paulo InCor | Luque M.C.A.,University of Sao Paulo | Gutierrez P.S.,Heart Institute of Sao Paulo InCor | Debbas V.,Heart Institute of Sao Paulo InCor | And 12 more authors.
PLoS ONE | Year: 2013

Atherosclerosis is a complex disease in which vessels develop plaques comprising dysfunctional endothelium, monocyte derived lipid laden foam cells and activated lymphocytes. Considering that humans and animal models of the disease develop quite distinct plaques, we used human plaques to search for proteins that could be used as markers of human atheromas. Phage display peptide libraries were probed to fresh human carotid plaques, and a bound phage homologous to plexin B1, a high affinity receptor for CD100, was identified. CD100 is a member of the semaphorin family expressed by most hematopoietic cells and particularly by activated T cells. CD100 expression was analyzed in human plaques and normal samples. CD100 mRNA and protein were analyzed in cultured monocytes, macrophages and foam cells. The effects of CD100 in oxLDL-induced foam cell formation and in CD36 mRNA abundance were evaluated. Human atherosclerotic plaques showed strong labeling of CD100/SEMA4D. CD100 expression was further demonstrated in peripheral blood monocytes and in in vitro differentiated macrophages and foam cells, with diminished CD100 transcript along the differentiation of these cells. Incubation of macrophages with CD100 led to a reduction in oxLDL-induced foam cell formation probably through a decrease of CD36 expression, suggesting for the first time an atheroprotective role for CD100 in the human disease. Given its differential expression in the numerous foam cells and macrophages of the plaques and its capacity to decrease oxLDL engulfment by macrophages we propose that CD100 may have a role in atherosclerotic plaque development, and may possibly be employed in targeted treatments of these atheromas. © 2013 Luque et al.


Rosa D.S.,Laboratory of Clinical Immunology and Allergy LIM60 | Rosa D.S.,Institute for Investigation in Immunology INCT | Rosa D.S.,Federal University of São Paulo | Ribeiro S.P.,Laboratory of Clinical Immunology and Allergy LIM60 | And 10 more authors.
Journal of Vaccines and Vaccination | Year: 2011

T-cell based vaccines against SIV/HIV may reduce both transmission and disease progression by inducing broad and functionally relevant T cell responses. Mounting evidence points toward a critical role for CD4+ T cells in the control of immunodeficiency and virus replication. We have previously shown that a DNA vaccine (HIVBr18), encoding 18 HIV CD4 epitopes capable of binding to multiple HLA class II molecules was able to elicit broad, polyfunctional, and long-lived CD4+ and CD8+ T cell responses in BALB/c and multiple HLA class II transgenic mice. By virtue of inducing broad responses against conserved CD4+ T cell epitopes that could be recognized across diverse common HLA class II alleles, this vaccine concept may cope with HIV-1 genetic variability and increase population coverage. Given the low immunogenicity of DNA vaccines in clinical trials, we tested the ability of a recombinant adenovirus serotype 5 encoding the 18 HIV epitopes (Ad5-HIVBr18) to increase specific cellular immune responses. We assessed the breadth and magnitude of HIV-specific proliferative and cytokine responses of CD4+ and CD8+ T cells induced by Ad5-HIVBr18 using different vaccination regimens/routes and compared to DNA immunization. Immunization with Ad5-HIVBr18 induced significantly higher specific CD4+ and CD8+ T cell proliferation, IFN-γ and TNF-α production than HIVBr18. The subcutaneous route of Ad5-HIVBr18 administration was associated with the highest responses. Ad5-HIVBr18 induced higher proliferative and cytokine responses than HIVBr18 up to 28 weeks post-immunization. Our results indicate that a vaccine based on an adenovirus vector encoding the HIVBr18 epitopes shows superior immunogenicity as compared to its DNA counterpart. These results support the possible teting of a vaccine encoding HIVBr18 in non-human primates and future clinical trials. © 2010 Saridi M, et al.


Almeida R.R.,University of Sao Paulo | Rosa D.S.,University of Sao Paulo | Rosa D.S.,Institute for Investigation in Immunology INCT | Rosa D.S.,Federal University of São Paulo | And 10 more authors.
PLoS ONE | Year: 2012

T-cell based vaccine approaches have emerged to counteract HIV-1/AIDS. Broad, polyfunctional and cytotoxic CD4+ T-cell responses have been associated with control of HIV-1 replication, which supports the inclusion of CD4+ T-cell epitopes in vaccines. A successful HIV-1 vaccine should also be designed to overcome viral genetic diversity and be able to confer immunity in a high proportion of immunized individuals from a diverse HLA-bearing population. In this study, we rationally designed a multiepitopic DNA vaccine in order to elicit broad and cross-clade CD4+ T-cell responses against highly conserved and promiscuous peptides from the HIV-1 M-group consensus sequence. We identified 27 conserved, multiple HLA-DR-binding peptides in the HIV-1 M-group consensus sequences of Gag, Pol, Nef, Vif, Vpr, Rev and Vpu using the TEPITOPE algorithm. The peptides bound in vitro to an average of 12 out of the 17 tested HLA-DR molecules and also to several molecules such as HLA-DP, -DQ and murine IAb and IAd. Sixteen out of the 27 peptides were recognized by PBMC from patients infected with different HIV-1 variants and 72% of such patients recognized at least 1 peptide. Immunization with a DNA vaccine (HIVBr27) encoding the identified peptides elicited IFN-γ secretion against 11 out of the 27 peptides in BALB/c mice; CD4+ and CD8+ T-cell proliferation was observed against 8 and 6 peptides, respectively. HIVBr27 immunization elicited cross-clade T-cell responses against several HIV-1 peptide variants. Polyfunctional CD4+ and CD8+ T cells, able to simultaneously proliferate and produce IFN-γ and TNF-α, were also observed. This vaccine concept may cope with HIV-1 genetic diversity as well as provide increased population coverage, which are desirable features for an efficacious strategy against HIV-1/AIDS. © 2012 Almeida et al.

Loading Institute for Investigation in Immunology INCT collaborators
Loading Institute for Investigation in Immunology INCT collaborators