Time filter

Source Type

Singapore, Singapore

Zhang R.,Institute for Infocomm Research | Zhang R.,National University of Singapore
IEEE Journal on Selected Areas in Communications | Year: 2010

Block diagonalization (BD) is a practical linear precoding technique that eliminates the inter-user interference in downlink multiuser multiple-input multiple-output (MIMO) systems. In this paper, we apply BD to the downlink transmission in a cooperative multi-cell MIMO system, where the signals from different base stations (BSs) to all the mobile stations (MSs) are jointly designed with the perfect knowledge of the downlink channels and transmit messages. Specifically, we study the optimal BD precoder design to maximize the weighted sum-rate of all the MSs subject to a set of per-BS power constraints. This design problem is formulated in an auxiliary MIMO broadcast channel (BC) with a set of transmit power constraints corresponding to those for individual BSs in the multi-cell system. By applying convex optimization techniques, this paper develops an efficient algorithm to solve this problem, and derives the closed-form expression for the optimal BD precoding matrix. It is revealed that the optimal BD precoding vectors for each MS in the per-BS power constraint case are in general non-orthogonal, which differs from the conventional orthogonal BD precoder design for the MIMO-BC under one single sum-power constraint. Moreover, for the special case of single-antenna BSs and MSs, the proposed solution reduces to the optimal zero-forcing beamforming (ZF-BF) precoder design for the weighted sum-rate maximization in the multiple-input single-output (MISO) BC with per-antenna power constraints. Suboptimal and low-complexity BD/ZF-BF precoding schemes are also presented, and their achievable rates are compared against those with the optimal schemes. © 2006 IEEE.

Lu S.,Institute for Infocomm Research
IEEE Transactions on Medical Imaging | Year: 2011

Under the framework of computer-aided diagnosis, this paper presents an accurate and efficient optic disc (OD) detection and segmentation technique. A circular transformation is designed to capture both the circular shape of the OD and the image variation across the OD boundary simultaneously. For each retinal image pixel, it evaluates the image variation along multiple evenly-oriented radial line segments of specific length. The pixels with the maximum variation along all radial line segments are determined, which can be further exploited to locate both the OD center and the OD boundary accurately. Experiments show that OD detection accuracies of 99.75%, 97.5%, and 98.77% are obtained for the STARE dataset, the ARIA dataset, and the MESSIDOR dataset, respectively, and the OD center error lies around six pixels for the STARE dataset and the ARIA dataset which is much smaller than that of state-of-the-art methods ranging 14-29 pixels. In addition, the OD segmentation accuracies of 93.4% and 91.7% are obtained for STARE dataset and ARIA dataset, respectively, that consists of many severely degraded images of pathological retinas that state-of-the-art methods cannot segment properly. Furthermore, the algorithm runs in 5 s, which is substantially faster than many of the state-of-the-art methods. © 2006 IEEE.

Ju H.,National University of Singapore | Zhang R.,National University of Singapore | Zhang R.,Institute for Infocomm Research
IEEE Transactions on Wireless Communications | Year: 2014

This paper studies the newly emerging wireless powered communication network in which one hybrid access point (H-AP) with constant power supply coordinates the wireless energy/information transmissions to/from a set of distributed users that do not have other energy sources. A "harvest-then- transmit" protocol is proposed where all users first harvest the wireless energy broadcast by the H-AP in the downlink (DL) and then send their independent information to the H-AP in the uplink (UL) by time-division- multiple-access (TDMA). First, we study the sum-throughput maximization of all users by jointly optimizing the time allocation for the DL wireless power transfer versus the users' UL information transmissions given a total time constraint based on the users' DL and UL channels as well as their average harvested energy values. By applying convex optimization techniques, we obtain the closed-form expressions for the optimal time allocations to maximize the sum-throughput. Our solution reveals an interesting "doubly near-far" phenomenon due to both the DL and UL distance-dependent signal attenuation, where a far user from the H-AP, which receives less wireless energy than a nearer user in the DL, has to transmit with more power in the UL for reliable information transmission. As a result, the maximum sum-throughput is shown to be achieved by allocating substantially more time to the near users than the far users, thus resulting in unfair rate allocation among different users. To overcome this problem, we furthermore propose a new performance metric so-called common-throughput with the additional constraint that all users should be allocated with an equal rate regardless of their distances to the H-AP. We present an efficient algorithm to solve the common-throughput maximization problem. Simulation results demonstrate the effectiveness of the common-throughput approach for solving the new doubly near-far problem in wireless powered communication networks. © 2014 IEEE.

Joung J.,Institute for Infocomm Research | Sayed A.H.,University of California at Los Angeles
IEEE Transactions on Signal Processing | Year: 2010

In this paper, multiple-input multiple-output (MIMO) relay transceiver processing is proposed for multiuser two-way relay communications. The relay processing is optimized based on both zero-forcing (ZF) and minimum mean-square-error (MMSE) criteria under relay power constraints. Various transmit and receive beamforming methods are compared including eigen beamforming, antenna selection, random beamforming, and modified equal gain beamforming. Local and global power control methods are designed to achieve fairness among all users and to maximize the system signal-to-noise ratio (SNR). Numerical results show that the proposed multiuser two-way relay processing can efficiently eliminate both co-channel interference (CCI) and self-interference (SI). © 2010 IEEE.

Meher P.K.,Institute for Infocomm Research
IEEE Transactions on Circuits and Systems I: Regular Papers | Year: 2010

Distributed arithmetic (DA)-based computation is popular for its potential for efficient memory-based implementation of finite impulse response (FIR) filter where the filter outputs are computed as inner-product of input-sample vectors and filter-coefficient vector. In this paper, however, we show that the look-up-table (LUT)-multiplier-based approach, where the memory elements store all the possible values of products of the filter coefficients could be an area-efficient alternative to DA-based design of FIR filter with the same throughput of implementation. By operand and inner-product decompositions, respectively, we have designed the conventional LUT-multiplier-based and DA-based structures for FIR filter of equivalent throughput, where the LUT-multiplier-based design involves nearly the same memory and the same number of adders, and less number of input register at the cost of slightly higher adder-widths than the other. Moreover, we present two new approaches to LUT-based multiplication, which could be used to reduce the memory size to half of the conventional LUT-based multiplication. Besides, we present a modified transposed form FIR filter, where a single segmented memory-core with only one pair of decoders are used to minimize the combinational area. The proposed LUT-based FIR filter is found to involve nearly half the memory-space and (1/N) times the complexity of decoders and input-registers, at the cost of marginal increase in the width of the adders, and additional ∼(4N× W) AND-OR-INVERT gates and ∼(2N×W) NOR gates. We have synthesized the DA-based design and LUT-multiplier based design of 16-tap FIR filters by Synopsys Design Compiler using TSMC 90 nm library, and find that the proposed LUT-multiplier-based design involves nearly 15% less area than the DA-based design for the same throughput and lower latency of implementation. © 2010 IEEE.

Discover hidden collaborations