Institute for Human Genetics and Helen Diller Family Comprehensive Cancer Center

San Francisco, CA, United States

Institute for Human Genetics and Helen Diller Family Comprehensive Cancer Center

San Francisco, CA, United States

Time filter

Source Type

Fejerman L.,Institute for Human Genetics and Helen Diller Family Comprehensive Cancer Center | Chen G.K.,University of Southern California | Eng C.,University of California at San Francisco | Huntsman S.,Institute for Human Genetics and Helen Diller Family Comprehensive Cancer Center | And 17 more authors.
Human Molecular Genetics | Year: 2012

Among US Latinas and Mexican women, those with higher European ancestry have increased risk of breast cancer. We combined an admixture mapping and genome-wide association mapping approach to search for genomic regions that may explain this observation. Latina women with breast cancer (n= 1497) and Latina controls (n= 1272) were genotyped using Affymetrix and Illumina arrays. We inferred locus-specific genetic ancestry and compared the ancestry between cases and controls. We also performed single nucleotide polymorphism (SNP) association analyses in regions of interest. Correction for multiple-hypothesis testing was conducted using permutations (P corrected). We identified one region where genetic ancestry was significantly associated with breast cancer risk: 6q25 [odds ratio (OR) per Indigenous American chromosome 0.75, 95% confidence interval (CI): 0.65-0.85, P= 1.1 × 10 -5, P corrected= 0.02]. A second region on 11p15 showed a trend towards association (OR per Indigenous American chromosome 0.77, 95% CI: 0.68-0.87, P= 4.3 × 10 -5, P corrected= 0.08). In both regions, breast cancer risk decreased with higher Indigenous American ancestry in concordance with observations made on global ancestry. The peak of the 6q25 signal includes the estrogen receptor 1 (ESR1) gene and 5' region, a locus previously implicated in breast cancer. Genome-wide association analysis found that a multi-SNP model explained the admixture signal in both regions. Our results confirm that the association between genetic ancestry and breast cancer risk in US Latinas is partly due to genetic differences between populations of European and Indigenous Americans origin. Fine-mapping within the 6q25 and possibly the 11p15 loci will lead to the discovery of the biologically functional variant/s behind this association. © The Author 2012. Published by Oxford University Press. All rights reserved.


Fejerman L.,Institute for Human Genetics and Helen Diller Family Comprehensive Cancer Center | Stern M.C.,University of Southern California | Ziv E.,Institute for Human Genetics and Helen Diller Family Comprehensive Cancer Center | John E.M.,Cancer Prevention Institute of California | And 9 more authors.
Carcinogenesis | Year: 2013

Hispanic women in the USA have lower breast cancer incidence than non-Hispanic white (NHW) women. Genetic factors may contribute to this difference. Breast cancer genome-wide association studies (GWAS) conducted in women of European or Asian descent have identified multiple risk variants. We tested the association between 10 previously reported single nucleotide polymorphisms (SNPs) and risk of breast cancer in a sample of 4697 Hispanic and 3077 NHW women recruited as part of three population-based case-control studies of breast cancer. We used stratified logistic regression analyses to compare the associations with different genetic variants in NHWs and Hispanics classified by their proportion of Indigenous American (IA) ancestry. Five of 10 SNPs were statistically significantly associated with breast cancer risk. Three of the five significant variants (rs17157903-RELN, rs7696175-TLR1 and rs13387042-2q35) were associated with risk among Hispanics but not in NHWs. The odds ratio (OR) for the heterozygous at 2q35 was 0.75 [95% confidence interval (CI) = 0.50-1.15] for low IA ancestry and 1.38 (95% CI = 1.04-1.82) for high IA ancestry (P interaction 0.02). The ORs for association at RELN were 0.87 (95% CI = 0.59-1.29) and 1.69 (95% CI = 1.04-2.73), respectively (P interaction 0.03). At the TLR1 locus, the ORs for women homozygous for the rare allele were 0.74 (95% CI = 0.42-1.31) and 1.73 (95% CI = 1.19-2.52) (P interaction 0.03). Our results suggest that the proportion of IA ancestry modifies the magnitude and direction of the association of 3 of the 10 previously reported variants. Genetic ancestry should be considered when assessing risk in women of mixed descent and in studies designed to discover causal mutations. © The Author 2013. Published by Oxford University Press. All rights reserved.


PubMed | Moffitt Cancer Center, Instituto Nacional Of Salud Publica, Stanford University, Institute for Human Genetics and Helen Diller Family Comprehensive Cancer Center and 4 more.
Type: Journal Article | Journal: Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology | Year: 2015

Most genetic variants associated with breast cancer risk have been discovered in women of European ancestry, and only a few genome-wide association studies (GWAS) have been conducted in minority groups. This research disparity persists in post-GWAS gene-environment interaction analyses. We tested the interaction between hormonal and lifestyle risk factors for breast cancer, and ten GWAS-identified SNPs among 2,107 Hispanic women with breast cancer and 2,587 unaffected controls, to gain insight into a previously reported gene by ancestry interaction in this population.We estimated genetic ancestry with a set of 104 ancestry-informative markers selected to discriminate between Indigenous American and European ancestry. We used logistic regression models to evaluate main effects and interactions.We found that the rs13387042-2q35(G/A) SNP was associated with breast cancer risk only among postmenopausal women who never used hormone therapy [per A allele OR: 0.94 (95% confidence intervals, 0.74-1.20), 1.20 (0.94-1.53), and 1.49 (1.28-1.75) for current, former, and never hormone therapy users, respectively, Pinteraction 0.002] and premenopausal women who breastfed >12 months [OR: 1.01 (0.72-1.42), 1.19 (0.98-1.45), and 1.69 (1.26-2.26) for never, <12 months, and >12 months breastfeeding, respectively, Pinteraction 0.014].The correlation between genetic ancestry, hormone replacement therapy use, and breastfeeding behavior partially explained a previously reported interaction between a breast cancer risk variant and genetic ancestry in Hispanic women.These results highlight the importance of understanding the interplay between genetic ancestry, genetics, and nongenetic risk factors and their contribution to breast cancer risk.

Loading Institute for Human Genetics and Helen Diller Family Comprehensive Cancer Center collaborators
Loading Institute for Human Genetics and Helen Diller Family Comprehensive Cancer Center collaborators