Time filter

Source Type

Dolle L.,Vrije Universiteit Brussel | Boulter L.,Institute for Genetics and Molecular Medicine | Leclercq I.A.,Catholic University of Louvain | van Grunsven L.A.,Vrije Universiteit Brussel
American Journal of Physiology - Gastrointestinal and Liver Physiology | Year: 2015

High aldehydedehydrogenase (ALDH) activity is a feature of stem cells from normal and cancerous tissues and a reliable universal marker used to isolate them. There are numerous ALDH isoforms with preferred substrate specificity variably expressed depending on tissue, cell type, and organelle and cell status. On the other hand, a given substrate may be metabolized by several enzyme isoforms. Currently ALDH activity is evidenced by using Aldefluor, a fluorescent substrate likely to be metabolized by numerous ALDH isoforms. Therefore, isolation techniques based on ALDH activity detection select a heterogeneous population of stem or progenitor cells. Despite active research in the field, the precise role(s) of different ALDH isoforms in stem cells remains enigmatic. Understanding the metabolic role of different ALDH isoform in the control of stem cell phenotype and cell fate during development, tissue homeostasis, or repair, as well as carcinogenesis, should open perspectives to significant discoveries in tissue biology. In this perspective, novel ALDH substrates are being developed. Here we describe how new substrates could be instrumental for better isolation of cell population with stemness potential and for defining hierarchy of cell populations in tissue. Finally, we speculate on other potential applications. © 2015 the American Physiological Society.

Long K.,University of Edinburgh | Moss L.,University of Edinburgh | Laursen L.,University of Aarhus | Boulter L.,Institute for Genetics and Molecular Medicine | Ffrench-Constant C.,University of Edinburgh
Nature Communications | Year: 2016

Development of the cerebral cortex requires regulation of proliferation and differentiation of neural stem cells and a diverse range of progenitors. Recent work suggests a role for extracellular matrix (ECM) and the major family of ECM receptors, the integrins. Here we show that enhancing integrin beta-1 signalling, by expressing a constitutively active integrin beta-1 (CA∗β1) in the embryonic chick mesencephalon, enhances neurogenesis and increases the number of mitotic cells dividing away from the ventricular surface, analogous to sub-apical progenitors in mouse. Only non-integrin-expressing neighbouring cells (lacking CA∗β1) contributed to the increased neurogenesis. Transcriptome analysis reveals upregulation of Wnt7a within the CA∗β1 cells and upregulation of the ECM protein Decorin in the neighbouring non-expressing cells. Experiments using inhibitors in explant models and genetic knock-downs in vivo reveal an integrin-Wnt7a-Decorin pathway that promotes proliferation and differentiation of neuroepithelial cells, and identify Decorin as a novel neurogenic factor in the central nervous system.

Dolle L.,Vrije Universiteit Brussel | Theise N.D.,Yeshiva University | Schmelzer E.,McGowan Institute for Regenerative Medicine | Boulter L.,Institute for Genetics and Molecular Medicine | And 2 more authors.
American Journal of Physiology - Gastrointestinal and Liver Physiology | Year: 2015

Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein, which is frequently and highly expressed on carcinomas, tumor-initiating cells, selected tissue progenitors, and embryonic and adult stem cells. During liver development, EpCAM demonstrates a dynamic expression, since it can be detected in fetal liver, including cells of the parenchyma, whereas mature hepatocytes are devoid of EpCAM. Liver regeneration is associated with a population of EpCAM-positive cells within ductular reactions, which gradually lose the expression of EpCAM along with maturation into hepatocytes. EpCAM can be switched on and off through a wide panel of strategies to fine-tune EpCAM-dependent functional and differentiative traits. EpCAM-associated functions relate to cell–cell adhesion, proliferation, maintenance of a pluripotent state, regulation of differentiation, migration, and invasion. These functions can be conferred by the full-length protein and/or EpCAM-derived fragments, which are generated upon regulated intramembrane proteolysis. Control by EpCAM therefore not only depends on the presence of full-length EpCAM at cellular membranes but also on varying rates of the formation of EpCAM-derived fragments that have their own regulatory properties and on changes in the association of EpCAM with interaction partners. Thus spatiotemporal localization of EpCAM in immature liver progenitors, transit-amplifying cells, and mature liver cells will decisively impact the regulation of EpCAM functions and might be one of the triggers that contributes to the adaptive processes in stem/progenitor cell lineages. This review will summarize EpCAM-related molecular events and how they relate to hepatobiliary differentiation and regeneration. © the American Physiological Society.

Essafi A.,Institute for Genetics and Molecular Medicine | Webb A.,Institute for Genetics and Molecular Medicine | Berry R.,Institute for Genetics and Molecular Medicine | Slight J.,Institute for Genetics and Molecular Medicine | And 10 more authors.
Developmental Cell | Year: 2011

Wt1 regulates the epithelial-mesenchymal transition (EMT) in the epicardium and the reverse process (MET) in kidney mesenchyme. The mechanisms underlying these reciprocal functions are unknown. Here, we show in both embryos and cultured cells that Wt1 regulates Wnt4 expression dichotomously. In kidney cells, Wt1 recruits Cbp and p300 as coactivators; in epicardial cells it enlists Basp1 as a corepressor. Surprisingly, in both tissues, Wt1 loss reciprocally switches the chromatin architecture of the entire Ctcf-bounded Wnt4 locus, but not the flanking regions; we term this mode of action " chromatin flip-flop." Ctcf and cohesin are dispensable for Wt1-mediated chromatin flip-flop but essential for maintaining the insulating boundaries. This work demonstrates that a developmental regulator coordinates chromatin boundaries with the transcriptional competence of the flanked region. These findings also have implications for hierarchical transcriptional regulation in development and disease. © 2011 Elsevier Inc.

Dinour D.,Tel Aviv University | Gray N.K.,Queens Medical Research Institute | Ganon L.,Tel Aviv University | Knox A.J.S.,Trinity College Dublin | And 9 more authors.
Nephrology Dialysis Transplantation | Year: 2012

Background. Elevated serum uric acid (UA) is associated with gout, hypertension, cardiovascular and renal disease. Hereditary renal hypouricemia type 1 (RHUC1) is caused by mutations in the renal tubular UA transporter URAT1 and can be complicated by nephrolithiasis and exercise-induced acute renal failure (EIARF). We have recently shown that loss-of-function homozygous mutations of another UA transporter, GLUT9, cause a severe type of hereditary renal hypouricemia with similar complications (RHUC2). Methods. Two unrelated families with renal hypouricemia were clinically characterized. DNA was extracted and SLC22A12 and SLC2A9 coding for URAT1 and GLUT9, respectively, were sequenced. Transport studies into Xenopus laevis oocytes were utilized to evaluate the function of the GLUT9 mutations found. A molecular modeling study was undertaken to structurally characterize and probe the effects of these mutations. Results. Two novel homozygous GLUT9 missense mutations were identified: R171C and T125M. Mean serum UA level of the four homozygous subjectswas 0.1560.06 mg/dL and fractional excretion of UA was 89-150%. None of the affected subjects had nephrolithiasis, EIARF or any other complications. Transport assays revealed that both mutant proteins had a dramatically reduced ability to transport UA. Modeling showed that both R171C and T125Mmutations are located within the inner channel that transports UA between the cytoplasmic and extracellular regions. Conclusions. This is the second report of renal hypouricemia caused by homozygous GLUT9 mutations. Our findings confirm the pivotal role of GLUT9 in UA transport and highlight the similarities and differences between RHUC1 and RHUC2.© The Author 2011. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

Discover hidden collaborations