Entity

Time filter

Source Type


Riviere L.,Institute Pasteur Paris | Riviere L.,French National Center for Scientific Research | Gerossier L.,University of Lyon | Ducroux A.,Institute Pasteur Paris | And 10 more authors.
Journal of Hepatology | Year: 2015

Background & Aims Maintenance of the covalently closed circular HBV DNA (cccDNA) that serves as a template for HBV transcription is responsible for the failure of antiviral therapies. While studies in chronic hepatitis patients have shown that high viremia correlates with hyperacetylation of cccDNA-associated histones, the molecular mechanisms controlling cccDNA stability and transcriptional regulation are still poorly understood. This study aimed to decipher the role of chromatin and chromatin modifier proteins on HBV transcription. Methods We analyzed the chromatin structure of actively transcribed or silenced cccDNA by infecting primary human hepatocytes and differentiated HepaRG cells with wild-type virus or virus deficient (HBVX-) for the expression of hepatitis B virus X protein (HBx), that is required for HBV expression. Results In the absence of HBx, HBV cccDNA was transcriptionally silenced with the concomitant decrease of histone 3 (H3) acetylation and H3K4me3, increase of H3 di- and tri-methylation (H3K9me) and the recruitment of heterochromatin protein 1 factors (HP1) that correlate with condensed chromatin. SETDB1 was found to be the main histone methyltransferase responsible for the deposition of H3K9me3 and HBV repression. Finally, full transcriptional reactivation of HBVX- upon HBx re-expression correlated with an increase of histone acetylation and H3K4me3, and a concomitant decrease of HP1 binding and of H3K9me3 on the cccDNA. Conclusion Upon HBV infection, cellular mechanisms involving SETDB1-mediated H3K9me3 and HP1 induce silencing of HBV cccDNA transcription through modulation of chromatin structure. HBx is able to relieve this repression and allow the establishment of active chromatin. © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.


Carpentier A.,U.S. National Institute of Diabetes and Digestive and Kidney Diseases | Carpentier A.,Institute for Experimental Virology | Nimgaonkar I.,U.S. National Institute of Diabetes and Digestive and Kidney Diseases | Chu V.,U.S. National Institute of Diabetes and Digestive and Kidney Diseases | And 3 more authors.
Stem Cell Research | Year: 2016

The establishment of protocols to differentiate human pluripotent stem cells (hPSCs) including embryonic (ESC) and induced pluripotent (iPSC) stem cells into functional hepatocyte-like cells (HLCs) creates new opportunities to study liver metabolism, genetic diseases and infection of hepatotropic viruses (hepatitis B and C viruses) in the context of specific genetic background. While supporting efficient differentiation to HLCs, the published protocols are limited in terms of differentiation into fully mature hepatocytes and in a smaller-well format. This limitation handicaps the application of these cells to high-throughput assays. Here we describe a protocol allowing efficient and consistent hepatic differentiation of hPSCs in 384-well plates into functional hepatocyte-like cells, which remain differentiated for more than 3 weeks. This protocol affords the unique opportunity to miniaturize the hPSC-based differentiation technology and facilitates screening for molecules in modulating liver differentiation, metabolism, genetic network, and response to infection or other external stimuli. © 2016.


Pfaender S.,Institute for Experimental Virology | Cavalleri J.M.V.,University of Veterinary Medicine Hannover | Walter S.,Institute for Experimental Virology | Doerrbecker J.,Institute for Experimental Virology | And 13 more authors.
Hepatology | Year: 2015

Hepatitis C virus (HCV) has a very narrow species and tissue tropism and efficiently replicates only in humans and the chimpanzee. Recently, several studies identified close relatives to HCV in different animal species. Among these novel viruses, the nonprimate hepaciviruses (NPHV) that infect horses are the closest relatives of HCV described to date. In this study, we analyzed the NPHV prevalence in northern Germany and characterized the clinical course of infection and viral tissue tropism to explore the relevance of HCV-related horse viruses as a model for HCV infection. We found that approximately 31.4% of 433 horses were seropositive for antibodies (Abs) against NPHV and approximately 2.5% carried viral RNA. Liver function analyses revealed no indication for hepatic impairment in 7 of 11 horses. However, serum gamma-glutamyl transferase (GGT) concentrations were mildly elevated in 3 horses, and 1 horse displayed even highly elevated GGT levels. Furthermore, we observed that NPHV infection could be cleared in individual horses with a simultaneous emergence of nonstructural (NS)3-specific Abs and transient elevation of serum levels of liver-specific enzymes indicative for a hepatic inflammation. In other individual horses, chronic infections could be observed with the copresence of viral RNA and NS3-specific Abs for over 6 months. For the determination of viral tissue tropism, we analyzed different organs and tissues of 1 NPHV-positive horse using quantitative real-time polymerase chain reaction and fluorescent in situ hydridization and detected NPHV RNA mainly in the liver and at lower amounts in other organs. Conclusion: Similar to HCV infections in humans, this work demonstrates acute and chronic stages of NPHV infection in horses with viral RNA detectable predominantly within the liver. © 2014 by the American Association for the Study of Liver Diseases.


Pfaender S.,Institute for Experimental Virology | Heyden J.,Institute for Experimental Virology | Friesland M.,Institute for Experimental Virology | Ciesek S.,Hannover Medical School | And 10 more authors.
Journal of Infectious Diseases | Year: 2013

Background. Hepatitis C virus (HCV) is spread through direct contact with blood, although alternative routes of transmission may contribute to the global burden. Perinatal infection occurs in up to 5% of HCV-infected mothers, and presence of HCV RNA in breast milk has been reported. We investigated the influence of breast milk on HCV infectiousness. Methods/Results. Human breast milk reduced HCV infectivity in a dose-dependent manner. This effect was species-specific because milk from various animals did not inhibit HCV infection. Treatment of HCV with human breast milk did not compromise integrity of viral RNA or capsids but destroyed the lipid envelope. Fractionation of breast milk revealed that the antiviral activity is present in the cream fraction containing the fat. Proteolytic digestion of milk proteins had no influence on its antiviral activity, whereas prolonged storage at 4°C increased antiviral activity. Notably, pretreatment with a lipase inhibitor ablated the antiviral activity and specific free fatty acids of breast milk were antiviral. Conclusions. The antiviral activity of breast milk is linked to endogenous lipase-dependent generation of free fatty acids, which destroy the viral lipid envelope. Therefore, nursing by HCV-positive mothers is unlikely to play a major role in vertical transmission. © The Author 2013.

Discover hidden collaborations