Time filter

Source Type

Maksimenko A.V.,Institute for Experimental Cardiology | Turashev A.D.,Institute for Experimental Cardiology
Russian Journal of Bioorganic Chemistry | Year: 2014

Glycocalyx is a complex of membrane-bound molecules at the interface between circulating blood and the endothelium of the vessel wall; it performs a number of specific biological functions maintaining vascular homeostasis. It contains sulfated glycosaminoglycans (proteoglycans) bound to membrane proteins, hyaluronan, glycoproteins, and plasma proteins. Today, endothelial glycocalyx is considered not only a simple inert barrier and molecular sieve, but a self-renewable three-dimensional network of various polysaccharides and protein derivatives, a reservoir of biologically active compounds, and the mechanical transducer of circulation sheer stress onto the endothelium. Under conditions of pathological vascular damages, endothelial glycocalyx is destroyed, which impairs the integrity of the vascular wall at the level of macro- and microcirculation and leads to development of the cardiovascular disorders and other diseases. Destruction of glycocalyx seems to be one of the first stages of vascular damage. This explains the diagnostic value of detection and therapeutic importance of correction of glycocalyx damage. Biomedical application of endothelial glycocalyx and its individual components in molecular and cellular engineering seems promising. © 2014 Pleiades Publishing, Ltd.


Maksimenko A.V.,Institute for Experimental Cardiology | Turashev A.D.,Institute for Experimental Cardiology
Russian Journal of Bioorganic Chemistry | Year: 2014

The luminal surface of a blood vessel accommodates a complex multicomponent system of mainly carbohydrates and proteins called glycocalyx. According to the concept of the double protective layer, glycocalyx is the first protection barrier of the vascular wall. The structure of glycocalyx is determined by a group of proteoglycans, glycoproteins, and glycosaminoglycans. Two groups of molecules are distinguished within the glycocalyx constituents, that is, membrane proteoglycans (syndecans and glypicans bound to endothelial cell membranes) and soluble proteoglycans (perlecan, biglycan, versican, decorin, and mimecan). There are five types of glycosaminoglycan chains; these are heperan sulfate, chondroitin sulfate, dermatan sulfate, keratan sulfate, and hyaluronan. There is a dynamic equilibrium between the soluble components of glycocalyx and flowing blood, which allows for separation of the endothelial surface layer. Due to its complexity and location at the interface of blood circulation system, glycocalyx is involved in the maintenance of vascular homeostasis. Here, the molecular composition of glycocalyx, properties of its components, biosynthesis, and common structural features are discussed. © 2014 Pleiades Publishing, Ltd.

Loading Institute for Experimental Cardiology collaborators
Loading Institute for Experimental Cardiology collaborators