Time filter

Source Type

Lascano V.,University of Amsterdam | Zabalegui L.F.,Institute Of Genetique Moleculaire Of Montpellier | Zabalegui L.F.,Montpellier University | Cameron K.,University of Amsterdam | And 12 more authors.
Cell Death and Differentiation | Year: 2012

The tumor necrosis factor (TNF) family member APRIL (A proliferation inducing ligand) is a disease promoter in B-cell malignancies. APRIL has also been associated with a wide range of solid malignancies, including colorectal cancer (CRC). As evidence for a supportive role of APRIL in solid tumor formation was still lacking, we studied the involvement of APRIL in CRC. We observed that ectopic APRIL expression exacerbates the number and size of adenomas in ApcMin mice and in a mouse model for colitis-associated colon carcinogenesis. Furthermore, knockdown of APRIL in primary spheroid cultures of colon cancer cells and both mouse and human CRC cell lines reduced tumor clonogenicity and in vivo outgrowth. Taken together, our data therefore indicate that both tumor-derived APRIL and APRIL produced by non-tumor cells is supportive in colorectal tumorigenesis. © 2012 Macmillan Publishers Limited. All rights reserved.

Schafer H.,Laboratory of Molecular Gastroenterology and Hepatology | Dieckmann C.,Laboratory of Molecular Gastroenterology and Hepatology | Korniienko O.,Institute for Experimental Cancer Research | Moldenhauer G.,German Cancer Research Center | And 6 more authors.
Cancer Letters | Year: 2012

The adhesion molecule L1CAM (CD171) accounts for enhanced motility, invasiveness and chemoresistance of tumor cells and represents a novel marker for various tumor entities including pancreatic and ovarian carcinoma. Recently, we showed that L1CAM inhibition increases the apoptotic response of tumor cells towards cytostatic drugs pointing to the potential of L1CAM to serve as a chemosensitizer in anti-cancer therapy. Thus, the present study evaluated the therapeutic potential of combined treatment with L1CAM antibodies and chemotherapeutic drugs in pancreatic and ovarian carcinoma model systems. in vivo. Two L1CAM-specific antibodies (L1-14.10 and L1-9.3/2a) exhibiting high binding affinity to the L1CAM expressing pancreatic adenocarcinoma cell line Colo357 and the ovarian carcinoma cell line SKOV3ip were used for treatment. The combined therapy of SCID mice with either L1CAM antibody and gemcitabine and paclitaxel, respectively, reduced the growth of subcutaneously grown Colo357 or SKOV3ip tumors more efficiently than treatment with the cytostatic drug alone or in combination with control IgG. This was accompanied by an increased number of apoptotic tumor cells along with an elevated procaspase-8 expression. Furthermore, a lowered activation of NF-κB along with a reduced expression of VEGF and a diminished number of CD31-positive blood vessels were observed in tumors after combined therapy compared to control treatments, while the infiltration of F4/80-positive macrophages increased. Overall, these data provide new insights into the mechanism of the anti-cancer activity of L1CAM-blocking antibodies. in vivo and support the suitability of L1CAM as a target for chemosensitization and of L1CAM-interfering antibodies as an appropriate tool to increase the therapeutic response of pancreatic and ovarian carcinoma. © 2011 Elsevier Ireland Ltd.

Kumar M.,Institute of Molecular Medicine | Kumar M.,Heinrich Pette Institute | Witt B.,Heinrich Pette Institute | Knippschild U.,University of Ulm | And 11 more authors.
International Journal of Cancer | Year: 2013

Telomerase is activated in the majority of invasive breast cancers, but the time point of telomerase activation during mammary carcinogenesis is not clear. We have recently presented a transgenic mouse model to study human telomerase reverse transcriptase (TERT) gene expression in vivo (hTERTp-lacZ). In the present study, hTERTp-lacZxWAP-T bitransgenic mice were generated to analyze the mechanisms responsible for human and mouse TERT upregulation during tumor progression in vivo. We found that telomerase activity and TERT expression were consistently upregulated in SV40-induced invasive mammary tumors compared to normal and hyperplastic tissues and ductal carcinoma in situ (DCIS). Human and mouse TERT genes are regulated similarly in the breast tissue, involving the CEBP transcription factors. Loss of CEBP-α and induction of CEBP-β expression correlated well with the activation of TERT expression in mouse mammary tumors. Transfection of CEBP-α into human or murine cells resulted in TERT repression, whereas knockdown of CEBP-α in primary human mammary epithelial cells resulted in reactivation of endogenous TERT expression and telomerase activity. Conversely, ectopic expression of CEBP-β activated endogenous TERT gene expression. Moreover, ChIP and EMSA experiments revealed binding of CEBP-α and CEBP-β to human TERT-promoter. This is the first evidence indicating that CEBP-α and CEBP-β are involved in TERT gene regulation during carcinogenesis. What's new? Telomerase activity has been described in invasive breast cancer, but little is known about its regulation in this disease. In this study, telomerase activity and expression of the telomerase catalytic subunit TERT were found to be strongly induced in invasive but not non-invasive mammary carcinomas of mice. In addition, CEBP transcription factors were observed bound to the TERT promoter, suggesting that they are involved in TERT regulation and carcinogenesis. The findings could have implications for the treatment of breast cancer. Copyright © 2012 UICC.

Geismann C.,University of Kiel | Grohmann F.,University of Kiel | Sebens S.,2Institute for Experimental Medicine | Wirths G.,University of Kiel | And 11 more authors.
Cell Death and Disease | Year: 2014

Pancreatic ductal adenocarcinoma (PDAC) represents one of the deadliest malignancies with an overall life expectancy of 6 months despite current therapies. NF-?B signalling has been shown to be critical for this profound cell-autonomous resistance against chemotherapeutic drugs and death receptor-induced apoptosis, but little is known about the role of the c-Rel subunit in solid cancer and PDAC apoptosis control. In the present study, by analysis of genome-wide patterns of c-Rel-dependent gene expression, we were able to establish c-Rel as a critical regulator of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in PDAC. TRAIL-resistant cells exhibited a strong TRAIL-inducible NF-?B activity, whereas TRAIL-sensitive cells displayed only a small increase in NF-?B-binding activity. Transfection with siRNA against c-Rel sensitized the TRAIL-resistant cells in a manner comparable to siRNA targeting the p65/RelA subunit. Gel-shift analysis revealed that c-Rel is part of the TRAIL-inducible NF-?B complex in PDAC. Array analysis identified NFATc2 as a c-Rel target gene among the 12 strongest TRAIL-inducible genes in apoptosis-resistant cells. In line, siRNA targeting c-Rel strongly reduced TRAIL-induced NFATc2 activity in TRAIL-resistant PDAC cells. Furthermore, siRNA targeting NFATc2 sensitized these PDAC cells against TRAILinduced apoptosis. Finally, TRAIL-induced expression of COX-2 was diminished through siRNA targeting c-Rel or NFATc2 and pharmacologic inhibition of COX-2 with celecoxib or siRNA targeting COX-2, enhanced TRAIL apoptosis. In conclusion, we were able to delineate a novel c-Rel-, NFATc2- and COX-2-dependent antiapoptotic signalling pathway in PDAC with broad clinical implications for pharmaceutical intervention strategies. © 2014 Macmillan Publishers Limited. All rights reserved.

Schafer H.,Laboratory of Molecular Gastroenterology and Hepatology | Geismann C.,Laboratory of Molecular Gastroenterology and Hepatology | Heneweer C.,Clinic for Diagnostic Radiology | Egberts J.-H.,Clinic of General Surgery and Thoracic Surgery | And 8 more authors.
Carcinogenesis | Year: 2012

Pancreatic ductal adenocarcinoma (PDAC) and chronic pancreatitis, representing one risk factor for PDAC, are characterized by a marked desmoplasia enriched of pancreatic myofibroblasts (PMFs). Thus, PMFs are thought to essentially promote pancreatic tumorigenesis. We recently demonstrated that the adhesion molecule L1CAM is involved in epithelial-mesenchymal transition of PMF-cocultured H6c7 human ductal epithelial cells and that L1CAM is expressed already in ductal structures of chronic pancreatitis with even higher elevation in primary tumors and metastases of PDAC patients. This study aimed at investigating whether PMFs and L1CAM drive malignant transformation of pancreatic ductal epithelial cells by enhancing their tumorigenic potential. Cell culture experiments demonstrated that in the presence of PMFs, H6c7 cells exhibit a profound resistance against death ligand-induced apoptosis. This apoptosis protection was similarly observed in H6c7 cells stably overexpressing L1CAM. Intrapancreatic inoculation of H6c7 cells together with PMFs (H6c7co) resulted in tumor formation in 7/8 and liver metastases in 6/8 severe combined immunodeficiency (SCID) mice, whereas no tumors and metastases were detectable after inoculation of H6c7 cells alone. Likewise, tumor outgrowth and metastases resulted from inoculation of L1CAM-overexpressing H6c7 cells in 5/7 and 3/7 SCID mice, respectively, but not from inoculation of mock-transfected H6c7 cells. Treatment of H6c7co tumor-bearing mice with the L1CAM antibody L1-9.3/2a inhibited tumor formation and liver metastasis in 100 and 50%, respectively, of the treated animals. Overall, these data provide new insights into the mechanisms of how PMFs and L1CAM contribute to malignant transformation of pancreatic ductal epithelial cells in early stages of pancreatic tumorigenesis. © The Author 2011. Published by Oxford University Press. All rights reserved.

Discover hidden collaborations