Time filter

Source Type

Varotsos K.V.,National and Kapodistrian University of Athens | Tombrou M.,National and Kapodistrian University of Athens | Giannakopoulos C.,Institute for Environmental Research and Sustainable Development
Journal of Geophysical Research: Atmospheres | Year: 2013

A statistical model to examine the potential impact of increasing future temperatures due to climate change on ozone exceedances (days with daily maximum 8 h average ≥ 60 ppb) is developed for Europe. We employ gridded observed daily maximum temperatures and hourly ozone observations from nonurban stations across Europe, together with daily maximum temperatures for 2021-2050 and 2071-2100 from three regional climate models, based on the Intergovernmental Panel on Climate Change Special Reports on Emissions Scenarios A1B scenario. A rotated principal components analysis is applied to the ozone stations yielding five principal components, which divide the study domain in five subregions. The historical ozone-temperature relationship is examined and then used to provide estimates of future ozone exceedance days under current emissions and under the assumption that this relationship will retain its main characteristics. Results suggest that increases in the upper temperature percentiles lead to statistically significant increases (95% statistical significance level) of the ozone exceedances for both future periods. The greatest average increases depending on the particular regional climate model range from 5 to 12 extra ozone days/yr for 2021-2050 and from 16 to 25 for 2071-2100, in southeast Europe. The lowest average increases range from 0 to 2 extra ozone days/yr for 2021-2050 and from 2 to 4 for 2071-2100 and are seen in northwest Europe. The simulations with the dynamical Goddard Institute of Space Studies/GEOS-CHEM climate chemistry modeling system shows decreases instead of increases in eastern Europe, higher increases in northwest Europe, whereas for the other subregions similar results to the statistical model are obtained. Key Points Statistical models can complement the dynamical ones Statistical models could provide useful tools for policymakers Greatest increases of climate change impact on ozone are seen in Southern Europe © 2013. American Geophysical Union. All Rights Reserved.

Moriondo M.,CNR Institute for Biometeorology | Giannakopoulos C.,Institute for Environmental Research and Sustainable Development | Bindi M.,University of Florence
Climatic Change | Year: 2011

This work was aimed at assessing the role of climate extremes in climate change impact assessment of typical winter and summer Mediterranean crops by using Regional Circulation Model (RCM) outputs as drivers of a modified version of the CropSyst model. More specifically, climate change effects were investigated on sunflower (Helianthus annuus L.) and winter wheat (Triticum aestivum L.) development and yield under the A2 and B2 scenarios of the IPCC Special Report on Emissions Scenarios (SRES). The direct impact of extreme climate events (i. e. heat stress at anthesis stage) was also included. The increase in both mean temperatures and temperature extremes under A2 and B2 scenarios (2071-2100) resulted in: a general advancement of the main phenological stages, shortening of the growing season and an increase in the frequency of heat stress during anthesis with respect to the baseline (1961-1990). The potential impact of these changes on crop yields was evaluated. It was found that winter and summer crops may possess a different fitting capacity to climate change. Sunflower, cultivated in the southern regions of the Mediterranean countries, was more prone to the direct effect of heat stress at anthesis and drought during its growing cycle. These factors resulted in severe yield reduction. In contrast, the lower frequency of heat stress and drought allowed the winter wheat crop to attain increased yields with respect to the baseline period. It can be concluded that the impact of extreme events should be included in crop-modelling approaches, otherwise there is the risk of underestimating crop yield losses, which in turn would result in the application of incorrect policies for coping with climate change. © 2010 Springer Science+Business Media B.V.

Retalis A.,Institute for Environmental Research and Sustainable Development | Sifakis N.,Institute for Space Applications and Remote Sensing
ISPRS Journal of Photogrammetry and Remote Sensing | Year: 2010

Low and moderate spatial resolution satellite sensors (such as TOMS, AVHRR, SeaWiFS) have already shown their capability in tracking aerosols at a global scale. Sensors with moderate to high spatial resolution (such as MODIS and MERIS) seem also to be appropriate for aerosol retrieval at a regional scale. We investigated in this study the potential of MERIS-ENVISAT data to resolve the horizontal spatial distribution of aerosols over urban areas, such as the Athens metropolitan area, by using the differential textural analysis (DTA) code. The code was applied to a set of geo-corrected images to retrieve and map aerosol optical thickness (AOT) values relative to a reference image assumed to be clean of pollution with a homogeneous atmosphere. The comparison of satellite retrieved AOT against PM10 data measured at ground level showed a high positive correlation particularly for the AOT values calculated using the 5th MERIS' spectral band (R2=0.83). These first results suggest that the application of the DTA code on cloud free areas of MERIS images can be used to provide AOT related to air quality in this urban region. The accuracy of retrieved AOT mainly depends on the overall quality, the pollution cleanness and the atmospheric homogeneity of the reference image. © 2009 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS).

The estimation of transient streamflow from stage measurements is indeed important and the study of Dottori, Martina and Todini (2009) (henceforth DMT) is useful, however, DMT seem to miss certain of its practical aspects. The goal is to infer the discharge from measurements of the stage conveniently and with accuracy adequate for practical work. This comment addresses issues of the applicability of the DMT method in the field. DMT also advocate their method as a replacement of the widely used Jones Formula. The Jones Formula was modified by Thomas (Henderson, 1966) to include the temporal derivative of the depth, instead of the spatial one, to specifically allow discharge estimation from at-a-section stage observations. The outcome of the comparison is not surprising in view of this approximation. However, this discussion intends to show that, properly evaluated, the praxis-oriented Jones Formula, which did well in the tests, can perform better than DMT imply. It will be also documented that the DMT methodology relates to a known method for computing flood depth profiles. © 2010 Author(s).

Dascalaki E.G.,Institute for Environmental Research and Sustainable Development | Sermpetzoglou V.G.,School Buildings Organization
Energy and Buildings | Year: 2011

School buildings constitute a major part of the non-residential building stock, though due to their operational characteristics, they represent a low percentage of the overall energy balance of the building sector. Although health and productivity of pupils and teachers is strongly affected by the indoor environmental quality of their school, poor indoor air quality has been reported in published literature, even so for recently constructed school buildings. The same applies for the energy consumption, with large amounts of energy being wasted because no energy saving measures are applied for the operation of schools. This paper presents the outcome of a study on the energy performance of Hellenic school buildings. The general features of the contemporary building stock are presented along with the results from an energy survey in 135 Hellenic schools. The derived energy consumption benchmarks are compared with published literature. Finally, the energy performance and indoor environmental quality of a representative sample of schools in metropolitan Athens are assessed in a holistic approach to the "energy efficiency - thermal comfort - indoor air quality" dilemma. The IEQ assessment was based on an objective evaluation by monitoring crucial indoor conditions and a subjective occupant evaluation using standardized questionnaires. The potential of several energy conservation measures is evaluated in terms of energy savings and reduction of greenhouse gas emissions along with the related payback periods. © 2010 Elsevier B.V. All rights reserved.

Discover hidden collaborations