Time filter

Source Type

Bellevue, WA, United States

Bershteyn A.,Institute for Disease Modeling
Journal of the Royal Society, Interface / the Royal Society

Efficient planning and evaluation of human immunodeficiency virus (HIV) prevention programmes requires an understanding of what sustains the epidemic, including the mechanism by which HIV transmission keeps pace with the ageing of the infected population. Recently, more detailed population models have been developed which represent the epidemic with sufficient detail to characterize the dynamics of ongoing transmission. Here, we describe the structure and parameters of such a model, called EMOD-HIV v. 0.7. We analyse the chains of transmission that allow the HIV epidemic to propagate across age groups in this model. In order to prevent the epidemic from dying out, the virus must find younger victims faster than its extant victims age and die. The individuals who enable such transmission events in EMOD-HIV v. 0.7 are higher concurrency, co-infected males aged 26-29 and females aged 23-24. Prevention programmes that target these populations could efficiently interrupt the mechanisms that allow HIV to transmit at a pace that is faster than the progress of time. Source

Famulare M.,Institute for Disease Modeling

Wild poliovirus type 3 (WPV3) has not been seen anywhere since the last case of WPV3-associated paralysis in Nigeria in November 2012. At the time of writing, the most recent case of wild poliovirus type 1 (WPV1) in Nigeria occurred in July 2014, and WPV1 has not been seen in Africa since a case in Somalia in August 2014. No cases associated with circulating vaccine-derived type 2 poliovirus (cVDPV2) have been detected in Nigeria since November 2014. Has WPV1 been eliminated from Africa? Has WPV3 been eradicated globally? Has Nigeria interrupted cVDPV2 transmission? These questions are difficult because polio surveillance is based on paralysis and paralysis only occurs in a small fraction of infections. This report provides estimates for the probabilities of poliovirus elimination in Nigeria given available data as of March 31,2015. It is based on a model of disease transmission that is built from historical polio incidence rates and is designed to represent the uncertainties in transmission dynamics and poliovirus detection that are fundamental to interpreting long time periods without cases. The model estimates that, as of March 31, 2015, the probability of WPV1 elimination in Nigeria is 84%, and that if WPV1 has not been eliminated, a new case will be detected with 99% probability by the end of 2015. The probability of WPV3 elimination (and thus global eradication) is > 99%. However, it is unlikely that the ongoing transmission of cVDPV2 has been interrupted; the probability of cVDPV2 elimination rises to 83% if no new cases are detected by April 2016. Copyright: © 2015 Michael Famulare. Source

Bayati B.S.,Institute for Disease Modeling
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics

We couple a stochastic collocation method with an analytical expansion of the canonical epidemiological master equation to analyze the effects of both extrinsic and intrinsic noise. It is shown that depending on the distribution of the extrinsic noise, the master equation yields quantitatively different results compared to using the expectation of the distribution for the stochastic parameter. This difference is incident to the nonlinear terms in the master equation, and we show that the deviation away from the expectation of the extrinsic noise scales nonlinearly with the variance of the distribution. The method presented here converges linearly with respect to the number of particles in the system and exponentially with respect to the order of the polynomials used in the stochastic collocation calculation. This makes the method presented here more accurate than standard Monte Carlo methods, which suffer from slow, nonmonotonic convergence. In epidemiological terms, the results show that extrinsic fluctuations should be taken into account since they effect the speed of disease breakouts and that the gamma distribution should be used to model the basic reproductive number. © 2016 American Physical Society. Source

Proctor J.L.,Institute for Disease Modeling | Eckhoff P.A.,Institute for Disease Modeling
International Health

Background: The development and application of quantitative methods to understand disease dynamics and plan interventions is becoming increasingly important in the push toward eradication of human infectious diseases, exemplified by the ongoing effort to stop the spread of poliomyelitis. Methods: Dynamic mode decomposition (DMD) is a recently developed method focused on discovering coherent spatial-temporal modes in high-dimensional data collected from complex systems with time dynamics. The algorithm has a number of advantages including a rigorous connection to the analysis of nonlinear systems, an equation-free architecture, and the ability to efficiently handle high-dimensional data. Results:We demonstrate the method on three different infectious disease sets including Google Flu Trends data, pre-vaccination measles in the UK, and paralytic poliomyelitis wild type-1 cases in Nigeria. For each case, we describe the utility of the method for surveillance and resource allocation. Conclusions:We demonstrate howDMD can aid in the analysis of spatial-temporal disease data. DMD is poised to be an effective and efficient computational analysis tool for the study of infectious disease. © The Author 2015. Source

Background: Phylogeography improves our understanding of spatial epidemiology. However, application to practical problems requires choices among computational tools to balance statistical rigor, computational complexity, sensitivity to sampling strategy and interpretability. Methods: We introduce a fast, heuristic algorithm to reconstruct partially-observed transmission networks (POTN) that combines features of phylogenetic and transmission tree approaches. We compare the transmission network generated by POTN with existing algorithms (BEAST and SeqTrack), and discuss the benefits and challenges of phylogeographic analysis on examples of epidemic and endemic diseases: Ebola virus, H1N1 pandemic influenza and polio. Results: For the 2014 Sierra Leone Ebola virus outbreak and the 2009 H1N1 outbreak, all three methods provide similarly plausible transmission histories but differ in detail. For polio in northern Nigeria, we discuss performance trade-offs between the POTN and discrete phylogeography in BEASTand conclude that spatial history reconstruction is limited by under-sampling. Conclusions: POTN is complementary to available tools on densely-sampled data, fails gracefully on undersampled data and is scalable to accommodate larger datasets. We provide further evidence for the utility of phylogeography for understanding transmission networks of rapidly evolving epidemics. We propose simple heuristic criteria to identify how sampling rates and disease dynamics interact to determine fundamental limitations of phylogeographic inference. © The Author 2015. Source

Discover hidden collaborations