Entity

Time filter

Source Type


Thomas N.,University of Bern | Davidsson B.,Uppsala University | El-Maarry M.R.,University of Bern | Fornasier S.,University Paris Diderot | And 51 more authors.
Astronomy and Astrophysics | Year: 2015

Context. We present an investigation of the surface properties of areas on the nucleus of comet 67P/Churyumov-Gerasimenko. Aims. We aim to show that transport of material from one part of the cometary nucleus to another is a significant mechanism that influences the appearance of the nucleus and the surface thermal properties. Methods. We used data from the OSIRIS imaging system onboard the Rosetta spacecraft to identify surface features on the nucleus that can be produced by various transport mechanisms. We used simple calculations based on previous works to establish the plausibility of dust transport from one part of the nucleus to another. Results. We show by observation and modeling that "airfall" as a consequence of non-escaping large particles emitted from the neck region of the nucleus is a plausible explanation for the smooth thin deposits in the northern hemisphere of the nucleus. The consequences are also discussed. We also present observations of aeolian ripples and ventifacts. We show by numerical modeling that a type of saltation is plausible even under the rarified gas densities seen at the surface of the nucleus. However, interparticle cohesive forces present difficulties for this model, and an alternative mechanism for the initiation of reptation and creep may result from the airfall mechanism. The requirements on gas density and other parameters of this alternative make it a more attractive explanation for the observations. The uncertainties and implications are discussed. © 2015 ESO. Source


Keller H.U.,German Aerospace Center | Keller H.U.,TU Braunschweig | Mottola S.,German Aerospace Center | Davidsson B.,German Aerospace Center | And 46 more authors.
Astronomy and Astrophysics | Year: 2015

The complex shape of comet 67P and its oblique rotation axis cause pronounced seasonal effects. Irradiation and hence activity vary strongly. Aims. We investigate the insolation of the cometary surface in order to predict the sublimation of water ice. The strongly varying erosion levels are correlated with the topography and morphology of the present cometary surface and its evolution. Methods. The insolation as a function of heliocentric distance and diurnal (spin dependent) variation is calculated using >105 facets of a detailed digital terrain model. Shading, but also illumination and thermal radiation by facets in the field of view of a specific facet are iteratively taken into account. We use a two-layer model of a thin porous dust cover above an icy surface to calculate the water sublimation, presuming steady state and a uniform surface. Our second model, which includes the history of warming and cooling due to thermal inertia, is restricted to a much simpler shape model but allows us to test various distributions of active areas. Results. Sublimation from a dirty ice surface yields maximum erosion. A thin dust cover of 50 μm yields similar rates at perihelion. Only about 6% of the surface needs to be active to match the observed water production rates at perihelion. A dust layer of 1 mm thickness suppresses the activity by a factor of 4 to 5. Erosion on the south side can reach more than 10 m per orbit at active spots. The energy input to the concave neck area (Hapi) during northern summer is enhanced by about 50% owing to self-illumination. Here surface temperatures reach maximum values along the foot of the Hathor wall. Integrated over the whole orbit this area receives the least energy input. Based on the detailed shape model, the simulations identify "hot spots" in depressions and larger pits in good correlation with observed dust activity. Three-quarters of the total sublimation is produced while the sub-solar latitude is south, resulting in a distinct dichotomy in activity and morphology. Conclusions. The northern areas display a much rougher morphology than what is seen on Imhotep, an area at the equator that will be fully illuminated when 67P is closer to the Sun. Self-illumination in concave regions enhance the energy input and hence erosion. This explains the early activity observed at Hapi. Cliffs are more prone to erosion than horizontal, often dust covered, areas, which leads to surface planation. Local activity can only persist if the forming cliff walls are eroding. Comet 67P has two lobes and also two distinct sides. Transport of material from the south to the north is probable. The morphology of the Imhotep plain should be typical for the terrains of the yet unseen southern hemisphere. © 2015 ESO. Source


Preusker F.,German Aerospace Center | Scholten F.,German Aerospace Center | Matz K.-D.,German Aerospace Center | Roatsch T.,German Aerospace Center | And 44 more authors.
Astronomy and Astrophysics | Year: 2015

We analyzed more than 200 OSIRIS NAC images with a pixel scale of 0.9-2.4 m/pixel of comet 67P/Churyumov-Gerasimenko (67P) that have been acquired from onboard the Rosetta spacecraft in August and September 2014 using stereo-photogrammetric methods (SPG). We derived improved spacecraft position and pointing data for the OSIRIS images and a high-resolution shape model that consists of about 16 million facets (2 m horizontal sampling) and a typical vertical accuracy at the decimeter scale. From this model, we derive a volume for the northern hemisphere of 9.35 km3 ± 0.1 km3. With the assumption of a homogeneous density distribution and taking into account the current uncertainty of the position of the comet's center-of-mass, we extrapolated this value to an overall volume of 18.7 km3± 1.2 km3, and, with a current best estimate of 1.0 × 1013 kg for the mass, we derive a bulk density of 535 kg/m3± 35 kg/m3. Furthermore, we used SPG methods to analyze the rotational elements of 67P. The rotational period for August and September 2014 was determined to be 12.4041 ± 0.0004 h. For the orientation of the rotational axis (z-axis of the body-fixed reference frame) we derived a precession model with a half-cone angle of 0.14°, a cone center position at 69.54°/64.11° (RA/Dec J2000 equatorial coordinates), and a precession period of 10.7 days. For the definition of zero longitude (x-axis orientation), we finally selected the boulder-like Cheops feature on the big lobe of 67P and fixed its spherical coordinates to 142.35° right-hand-rule eastern longitude and -0.28° latitude. This completes the definition of the new Cheops reference frame for 67P. Finally, we defined cartographic mapping standards for common use and combined analyses of scientific results that have been obtained not only within the OSIRIS team, but also within other groups of the Rosetta mission. © 2015 ESO. Source


Bertini I.,University of Padua | Gutierrez P.J.,Institute Astrofisica Of Andalucia | Lara L.M.,Institute Astrofisica Of Andalucia | Marzari F.,University of Padua | And 47 more authors.
Astronomy and Astrophysics | Year: 2015

The European Space Agency Rosetta mission reached and started escorting its main target, the Jupiter-family comet 67P/Churyumov-Gerasimenko, at the beginning of August 2014. Within the context of solar system small bodies, satellite searches from approaching spacecraft were extensively used in the past to study the nature of the visited bodies and their collisional environment. During the approaching phase to the comet in July 2014, the OSIRIS instrument onboard Rosetta performed a campaign aimed at detecting objects in the vicinity of the comet nucleus and at measuring these objects' possible bound orbits. In addition to the scientific purpose, the search also focused on spacecraft security to avoid hazardous material in the comet's environment. Methods. Images in the red spectral domain were acquired with the OSIRIS Narrow Angle Camera, when the spacecraft was at a distance between 5785 km and 5463 km to the comet, following an observational strategy tailored to maximize the scientific outcome. From the acquired images, sources were extracted and displayed to search for plausible displacements of all sources from image to image. After stars were identified, the remaining sources were thoroughly analyzed. To place constraints on the expected displacements of a potential satellite, we performed Monte Carlo simulations on the apparent motion of potential satellites within the Hill sphere. Results. We found no unambiguous detections of objects larger than ~6 m within ~20 km and larger than ~1 m between ~20 km and ~110 km from the nucleus, using images with an exposure time of 0.14 s and 1.36 s, respectively. Our conclusions are consistent with independent works on dust grains in the comet coma and on boulders counting on the nucleus surface. Moreover, our analysis shows that the comet outburst detected at the end of April 2014 was not strong enough to eject large objects and to place them into a stable orbit around the nucleus. Our findings underline that it is highly unlikely that large objects survive for a long time around cometary nuclei. © 2015 ESO. Source


Fornasier S.,University Paris Diderot | Hasselmann P.H.,University Paris Diderot | Barucci M.A.,University Paris Diderot | Feller C.,University Paris Diderot | And 54 more authors.
Astronomy and Astrophysics | Year: 2015

The Rosetta mission of the European Space Agency has been orbiting the comet 67P/Churyumov-Gerasimenko (67P) since August 2014 and is now in its escort phase. A large complement of scientific experiments designed to complete the most detailed study of a comet ever attempted are onboard Rosetta. Aims. We present results for the photometric and spectrophotometric properties of the nucleus of 67P derived from the OSIRIS imaging system, which consists of a Wide Angle Camera (WAC) and a Narrow Angle Camera (NAC). The observations presented here were performed during July and the beginning of August 2014, during the approach phase, when OSIRIS was mapping the surface of the comet with several filters at different phase angles (1.3°-54°). The resolution reached up to 2.1 m/px. Methods. The OSIRIS images were processed with the OSIRIS standard pipeline, then converted into I/F radiance factors and corrected for the illumination conditions at each pixel using the Lommel-Seeliger disk law. Color cubes of the surface were produced by stacking registered and illumination-corrected images. Furthermore, photometric analysis was performed both on disk-averaged photometry in several filters and on disk-resolved images acquired with the NAC orange filter, centered at 649 nm, using Hapke modeling. Results. The disk-averaged phase function of the nucleus of 67P shows a strong opposition surge with a G parameter value of-0.13 ± 0.01 in the HG system formalism and an absolute magnitude Hv(1,1,0) = 15.74 ± 0.02 mag. The integrated spectrophotometry in 20 filters covering the 250-1000 nm wavelength range shows a red spectral behavior, without clear absorption bands except for a potential absorption centered at ~290 nm that is possibly due to SO2 ice. The nucleus shows strong phase reddening, with disk-averaged spectral slopes increasing from 11%/(100 nm) to 16%/(100 nm) in the 1.3°-54° phase angle range. The geometric albedo of the comet is 6.5 ± 0.2% at 649 nm, with local variations of up to ~16% in the Hapi region. From the disk-resolved images we computed the spectral slope together with local spectrophotometry and identified three distinct groups of regions (blue, moderately red, and red). The Hapi region is the brightest, the bluest in term of spectral slope, and the most active surface on the comet. Local spectrophotometry shows an enhancement of the flux in the 700-750 nm that is associated with coma emissions. © 2015 ESO. Source

Discover hidden collaborations