Institute for Chemistry and Technology of Materials

Sankt Radegund bei Graz, Austria

Institute for Chemistry and Technology of Materials

Sankt Radegund bei Graz, Austria

Time filter

Source Type

News Article | May 8, 2017
Site: www.chromatographytechniques.com

Safety, range and costs—these are the three big premises of electromobility. Safety definitely comes first. Lithium-based traction batteries are usually completely enclosed in the battery case and integrated in the vehicle to protect the battery from all conceivable stresses and external influences. This "armor" has an effect on construction, weight, size and overall design of the vehicle. "For the sake of safety, vehicle producers protect traction battery components usually more than is necessary, just to be on the safe side. As payback, however, there are certain restrictions. One reason for this practice is that too little research has been done into the behavior of battery components under crash conditions, such as battery cells," explains Wolfgang Sinz from the Institute of Vehicle Safety at TU Graz. Current research restricts itself mostly to the behavior of new vehicle traction batteries, without for example taking into account the possible influence of previous stress, such as ageing. And this is the point at which the team led by Wolfgang Sinz together with well-known national and international partners from research and industry takes up its work in the COMET project "SafeBattery," which moved on in April 2017. In the four-year research project funded by the Austrian Research Promotion Agency, the focus is on the mechanical, electrochemical, chemical and thermodynamic behavior of single cells and single modules on a lithium basis under crash loads. In the course of this, the researchers will investigate components with different histories, since "safety should be ensured not just of new batteries, but also of traction batteries in vehicles which have a certain amount of vibration, possible minor mechanical shortcomings due to small accidents and calendrical ageing behind them," says Sinz. Other factors influencing battery behavior in crash cases will be examined carefully, such as charging status and temperature. The SafeBattery team wants to sound out the limits of battery cells to subsequently define parameters which can be used to ensure that these limits are never exceeded in practice. A lot of collaboration is needed, not only from industry partners such as AVL, Steyr Motors, Audi and Daimler, but also from within TU Graz in the form of experts from the Institute for Chemistry and Technology of Materials and the Virtual Vehicle competence center. "There is a lot of interdisciplinary crossover in this project. We have a huge range of influencing parameters and have to examine and break down the mosaic into its constituent parts. Only then can we make recommendations concerning construction, integration and operation of the batteries," says Sinz. The team has developed and built its own test rigs with tailor-made measuring and sensor technology for a variety of crash scenarios for batteries and their components in the Institute's own crash test hall. "A unique experimental setup which can yield high-quality measuring data and findings from among the entire, highly complex procedures which usually only take milliseconds to complete," says Sinz. On top of this come numerical calculation methods and simulations to help better understand the multi-physical processes involved. This should result in a comprehensive knowledge of the behavior of traction batteries under crash loads in order to better integrate them in relevant vehicle concepts. This knowledge can be used to recognize early on critical states in batteries during development and in operation and to avoid them through specific measures. Furthermore, cell manufacturers are interested in precise requirement specifications. "Using the results obtained, we want to contribute to achieving more leeway in range and vehicle design while always guaranteeing safety," summarizes Sinz. Another focus of the project is that, together with the Institute of Chemistry and Technology of Materials, not only state-of-the-art lithium-ion batteries with liquid electrolytes will be investigated, but also next-generation lithium batteries with all solid state electrolytes. "What interests us here is whether the coming generation of drive batteries simply no longer has the failings of the current systems or whether they'll have new or different vulnerabilities," says Sinz.


News Article | May 8, 2017
Site: www.chromatographytechniques.com

Safety, range and costs—these are the three big premises of electromobility. Safety definitely comes first. Lithium-based traction batteries are usually completely enclosed in the battery case and integrated in the vehicle to protect the battery from all conceivable stresses and external influences. This "armor" has an effect on construction, weight, size and overall design of the vehicle. "For the sake of safety, vehicle producers protect traction battery components usually more than is necessary, just to be on the safe side. As payback, however, there are certain restrictions. One reason for this practice is that too little research has been done into the behavior of battery components under crash conditions, such as battery cells," explains Wolfgang Sinz from the Institute of Vehicle Safety at TU Graz. Current research restricts itself mostly to the behavior of new vehicle traction batteries, without for example taking into account the possible influence of previous stress, such as ageing. And this is the point at which the team led by Wolfgang Sinz together with well-known national and international partners from research and industry takes up its work in the COMET project "SafeBattery," which moved on in April 2017. In the four-year research project funded by the Austrian Research Promotion Agency, the focus is on the mechanical, electrochemical, chemical and thermodynamic behavior of single cells and single modules on a lithium basis under crash loads. In the course of this, the researchers will investigate components with different histories, since "safety should be ensured not just of new batteries, but also of traction batteries in vehicles which have a certain amount of vibration, possible minor mechanical shortcomings due to small accidents and calendrical ageing behind them," says Sinz. Other factors influencing battery behavior in crash cases will be examined carefully, such as charging status and temperature. The SafeBattery team wants to sound out the limits of battery cells to subsequently define parameters which can be used to ensure that these limits are never exceeded in practice. A lot of collaboration is needed, not only from industry partners such as AVL, Steyr Motors, Audi and Daimler, but also from within TU Graz in the form of experts from the Institute for Chemistry and Technology of Materials and the Virtual Vehicle competence center. "There is a lot of interdisciplinary crossover in this project. We have a huge range of influencing parameters and have to examine and break down the mosaic into its constituent parts. Only then can we make recommendations concerning construction, integration and operation of the batteries," says Sinz. The team has developed and built its own test rigs with tailor-made measuring and sensor technology for a variety of crash scenarios for batteries and their components in the Institute's own crash test hall. "A unique experimental setup which can yield high-quality measuring data and findings from among the entire, highly complex procedures which usually only take milliseconds to complete," says Sinz. On top of this come numerical calculation methods and simulations to help better understand the multi-physical processes involved. This should result in a comprehensive knowledge of the behavior of traction batteries under crash loads in order to better integrate them in relevant vehicle concepts. This knowledge can be used to recognize early on critical states in batteries during development and in operation and to avoid them through specific measures. Furthermore, cell manufacturers are interested in precise requirement specifications. "Using the results obtained, we want to contribute to achieving more leeway in range and vehicle design while always guaranteeing safety," summarizes Sinz. Another focus of the project is that, together with the Institute of Chemistry and Technology of Materials, not only state-of-the-art lithium-ion batteries with liquid electrolytes will be investigated, but also next-generation lithium batteries with all solid state electrolytes. "What interests us here is whether the coming generation of drive batteries simply no longer has the failings of the current systems or whether they'll have new or different vulnerabilities," says Sinz.


News Article | May 8, 2017
Site: www.eurekalert.org

Safety, range and costs: these are the three big premises of electromobility. Safety definitely comes first. Lithium-based traction batteries are usually completely enclosed in the battery case and integrated in the vehicle to protect the battery from all conceivable stresses and external influences. This "armour" has an effect on construction, weight, size and overall design of the vehicle. "For the sake of safety, vehicle producers protect traction battery components usually more than is necessary, just to be on the safe side. As payback, however, there are certain restrictions. One reason for this practice is that too little research has been done into the behaviour of battery components under crash conditions, such as battery cells," explains Wolfgang Sinz from the Institute of Vehicle Safety at TU Graz. Current research restricts itself mostly to the behaviour of new vehicle traction batteries, without for example taking into account the possible influence of previous stress, such as ageing. And this is the point at which the team led by Wolfgang Sinz together with well-known national and international partners from research and industry takes up its work in the COMET project "SafeBattery", which moved on in April 2017. In the four-year research project funded by the Austrian Research Promotion Agency, the focus is on the mechanical, electrochemical, chemical and thermodynamic behaviour of single cells and single modules on a lithium basis under crash loads. In the course of this, the researchers will investigate components with different histories, since "safety should be ensured not just of new batteries, but also of traction batteries in vehicles which have a certain amount of vibration, possible minor mechanical shortcomings due to small accidents and calendrical ageing behind them," says Wolfgang Sinz. Other factors influencing battery behaviour in crash cases will be examined carefully, such as charging status and temperature. The SafeBattery team wants to sound out the limits of battery cells to subsequently define parameters which can be used to ensure that these limits are never exceeded in practice. A lot of collaboration is needed, not only from industry partners such as AVL, Steyr Motors, Audi and Daimler, but also from within TU Graz in the form of experts from the Institute for Chemistry and Technology of Materials and the Virtual Vehicle competence centre. "There is a lot of interdisciplinary crossover in this project. We have a huge range of influencing parameters and have to examine and break down the mosaic into its constituent parts. Only then can we make recommendations concerning construction, integration and operation of the batteries," says Sinz. The team has developed and built its own test rigs with tailor-made measuring and sensor technology for a variety of crash scenarios for batteries and their components in the Institute's own crash test hall: "A unique experimental setup which can yield high-quality measuring data and findings from among the entire, highly complex procedures which usually only take milliseconds to complete," says Sinz. On top of this come numerical calculation methods and simulations to help better understand the multi-physical processes involved. This should result in a comprehensive knowledge of the behaviour of traction batteries under crash loads in order to better integrate them in relevant vehicle concepts. This knowledge can be used to recognise early on critical states in batteries during development and in operation and to avoid them through specific measures. Furthermore, cell manufacturers are interested in precise requirement specifications. "Using the results obtained, we want to contribute to achieving more leeway in range and vehicle design while always guaranteeing safety," summarises Sinz. Another focus of the project is that, together with the Institute of Chemistry and Technology of Materials, not only state-of-the-art lithium-ion batteries with liquid electrolytes will be investigated, but also next-generation lithium batteries with all solid state electrolytes. "What interests us here is whether the coming generation of drive batteries simply no longer has the failings of the current systems or whether they'll have new or different vulnerabilities," says Wolfgang Sinz. The partners in the K-project "SafeBattery" of the COMET programme are AVL List GmbH, SFL technology GmbH, Kreisel Electric GmbH, Steyr Motors GmbH, Audi AG, Daimler AG and Porsche AG. From academia, the Virtual Vehicle competence centre and Institute for Chemistry and Technology of Materials are assisting the Institute of Vehicle Safety, as is TU Graz. The project period is four years and will have a total financial volume of six million euros.


News Article | May 8, 2017
Site: phys.org

"For the sake of safety, vehicle producers protect traction battery components usually more than is necessary, just to be on the safe side. As payback, however, there are certain restrictions. One reason for this practice is that too little research has been done into the behaviour of battery components under crash conditions, such as battery cells," explains Wolfgang Sinz from the Institute of Vehicle Safety at TU Graz. Current research restricts itself mostly to the behaviour of new vehicle traction batteries, without for example taking into account the possible influence of previous stress, such as ageing. And this is the point at which the team led by Wolfgang Sinz together with well-known national and international partners from research and industry takes up its work in the COMET project "SafeBattery", which moved on in April 2017. In the four-year research project funded by the Austrian Research Promotion Agency, the focus is on the mechanical, electrochemical, chemical and thermodynamic behaviour of single cells and single modules on a lithium basis under crash loads. In the course of this, the researchers will investigate components with different histories, since "safety should be ensured not just of new batteries, but also of traction batteries in vehicles which have a certain amount of vibration, possible minor mechanical shortcomings due to small accidents and calendrical ageing behind them," says Wolfgang Sinz. Other factors influencing battery behaviour in crash cases will be examined carefully, such as charging status and temperature. The SafeBattery team wants to sound out the limits of battery cells to subsequently define parameters which can be used to ensure that these limits are never exceeded in practice. A lot of collaboration is needed, not only from industry partners such as AVL, Steyr Motors, Audi and Daimler, but also from within TU Graz in the form of experts from the Institute for Chemistry and Technology of Materials and the Virtual Vehicle competence centre. "There is a lot of interdisciplinary crossover in this project. We have a huge range of influencing parameters and have to examine and break down the mosaic into its constituent parts. Only then can we make recommendations concerning construction, integration and operation of the batteries," says Sinz. The team has developed and built its own test rigs with tailor-made measuring and sensor technology for a variety of crash scenarios for batteries and their components in the Institute's own crash test hall: "A unique experimental setup which can yield high-quality measuring data and findings from among the entire, highly complex procedures which usually only take milliseconds to complete," says Sinz. On top of this come numerical calculation methods and simulations to help better understand the multi-physical processes involved. This should result in a comprehensive knowledge of the behaviour of traction batteries under crash loads in order to better integrate them in relevant vehicle concepts. This knowledge can be used to recognise early on critical states in batteries during development and in operation and to avoid them through specific measures. Furthermore, cell manufacturers are interested in precise requirement specifications. "Using the results obtained, we want to contribute to achieving more leeway in range and vehicle design while always guaranteeing safety," summarises Sinz. Another focus of the project is that, together with the Institute of Chemistry and Technology of Materials, not only state-of-the-art lithium-ion batteries with liquid electrolytes will be investigated, but also next-generation lithium batteries with all solid state electrolytes. "What interests us here is whether the coming generation of drive batteries simply no longer has the failings of the current systems or whether they'll have new or different vulnerabilities," says Wolfgang Sinz. Detail shot of a battery cell in the test rig. Credit: Lunghammer - TU Graz Explore further: Cathode material with high energy density for all-solid lithium-ion batteries


Schmidt W.,Institute for Chemistry and Technology of Materials | Schmidt W.,Christian Doppler Laboratory | Bottke P.,Institute for Chemistry and Technology of Materials | Sternad M.,Institute for Chemistry and Technology of Materials | And 5 more authors.
Chemistry of Materials | Year: 2015

Lithium titanate (LTO) is one of the most promising anode materials for large-scale stationary electrochemical storage of energy produced from renewable sources. Besides many other aspects, such as negligible formation of passivation layers and no volume expansion during lithiation, the success of LTO is mainly based on its ability to easily accommodate and release Li ions in a fully reversible way. This feature is tightly connected with Li self-diffusion. As yet, little information is available about microscopic Li diffusion properties and elementary steps of Li hopping at low intercalation levels, i.e., at values of x being significantly smaller than 1. Here, we used 7Li spin-locking NMR relaxometry to probe absolute hopping rates of LTO (homogeneous) solid solutions in quasi-thermodynamic equilibrium. As a result, the largest increase of Li diffusivity is observed when small amounts of Li are inserted. Strong Coulomb repulsions caused by the simultaneous occupation of neighboring 8a and 16c sites serve as an explanation for the enhanced Li diffusivity found. At even larger values of x, Li mobility slows down but is still much faster than in the host material with x = 0. Our results experimentally corroborate the outcome of recently published calculations on the DFT level focusing on both dynamic and structural aspects. The findings favor the formation of LTO solid solutions upon chemical lithiation; the steep increase in Li diffusivity found might also help with understanding the flat insertion potential observed. © 2015 American Chemical Society.


Plesa I.,Polymer Competence Center Leoben | Schlogl S.,Polymer Competence Center Leoben | Radl S.V.,Polymer Competence Center Leoben | Muhlbacher I.,Polymer Competence Center Leoben | And 2 more authors.
2015 9th International Symposium on Advanced Topics in Electrical Engineering, ATEE 2015 | Year: 2015

Field grading materials with nonlinear behaviour are used in many high voltage applications to avoid any stress concentration that can deteriorate the material performance. In the present work, the current-voltage characteristics of surface functionalized silicon carbide (SiC) flakes were studied and compared to untreated particles. The nonlinear behavior of SiC flakes can be described by transport mechanisms at the grain contact, which can be modeled by Schottky-like barriers. The influence of the organic surface layer on the conduction mechanisms and the corresponding electrical properties were evaluated. In addition, physico-chemical analysis, including X-ray photoelectron spectroscopy (XPS), optical microscopy and zeta-potential measurements were accomplished in order to analyze the surface properties of the SiC flakes, prior to and after surface modification. © 2015 IEEE.


« Study shows renewable diesel from crude tall oil is a high quality drop-in fuel for off-road engines | Main | U Florida team using fungi to extract cobalt and lithium from waste batteries » Electrochemists at TU Graz have used single crystalline acceptor-doped Si—as ubiquitously used in the semiconductor industry—as anode material for rechargeable Li-ion batteries. In an open access paper in the journal Scientific Reports, the team suggests that the use of such patterned monocrystalline Si (m-Si) anodes directly shaped out of the Si wafer is a highly attractive route to realize miniaturized, on-board fully integrated, power supplies for Si-based chips. The microchip not only houses the electronics, but is at the same time an important part of a mini battery providing electrical energy, e.g. for sending and receiving information. Normally you cannot use single crystalline silicon as a battery component on its own because it expands considerably when implemented with lithium, starts to crack and is gradually destroyed. We use the doped semiconductor silicon of the chip directly. However, it is first carefully microstructured using a knowledge of the crystal axes and then electrochemically specially activated. —Michael Sternad, researcher at the Christian Doppler Laboratory for Lithium Batteries at TU Graz Possible applications are small self-powered, data-transmitting sensor chips for cars, airplanes (temperature, engine/chassis vibrations, tire pressure sensors) or medical purposes (sticker to measure body temperature, contact lenses that measure blood sugar concentrations). The main issue that inhibits so far the real-life application of silicon as practicable anode in LIBs is the remarkable, to some extent inhomogeneous, increase in volume during lithiation. This increase amounts up to 300% if we refer to amorphous silicon (a-Si) and complete electrochemical lithiation (0 mV vs Li/Li+). Both internal mechanical stress and the dramatic expansion leads to structural damage especially after several charge-discharge cycles have been completed. To deal with this issue and to diminish dilatation one may take advantage of thin Si films and nanostructured or porous materials with their ‘free’ volume, i.e., to make use of small, nm-sized Si particles. Moreover, it is favorably to enduringly keep Si in the amorphous (a-Si) rather than in the crystalline state (c-Si) while the battery is subject to charging and discharging. The use of nanostructured Si buffers not only volume expansion but also helps shorten diffusion paths for both Li ions and electrons. The large surface area of active material, however, may result in unwanted side reactions and heavy formation of passivating interphases. These so-called solid-electrolyte interphases (SEI) form because of the electrochemical instability of bare Si surfaces being in contact with the commonly used liquid electrolytes. In contrast to these approaches, the present study proposes the direct use of single crystalline acceptor-doped Si … Against possible objectives regarding the electrochemical activity of monocrystalline Si, we will show how single crystalline Si in a well-defined microstructured form can serve as powerful, long-lasting Si electrode that does not need any binders or conductive additives. For this purpose, μm-sized towers, with dimensions being larger than 10 μm, were fabricated and their electrochemical performance tested. Although the monocrystalline towers cannot benefit from nanosize effects, several outstanding properties make them superior to nanostructured Si especially if microbatteries are considered. As has been shown recently via in situ atomic scale imaging, during the first lithiation process m-Si transforms to an a-Li Si-phase via a so-called “ledge-mechanism”, i.e., by peeling off Si layer after Si layer. Fortunately, Li ion diffusivity in a-Li Si is rather high making it a convenient active material. Subsequent delithiation of a-Li Si yields the desired amorphous form of Si being characterized by the advantages sketched above. Hence, if we could make use of a-Si electrochemically obtained from wafer-grade Si directly, the well-established manufacturing methods of semiconductor industry can be utilized to pre-fabricate structured Si anodes with crystal orientations perfectly supporting the preferred lithiation pathway. Such implemented batteries may be produced in quantities of up to 5000 cells per 8-inch wafer, i.e., in a massively-parallel way. The low effort would result in low unit costs. The TU Graz team surface-structured a boron-doped 8-inch silicon wafer, producing towers with a base area of 50 × 50 μm2 and a height of 32 μm; the distance between the towers was 17.5 μm. To complete the electrode, sputter-coated the backside of the silicon wafer with a copper layer and sawed the wafer to produce 4 x 4 mm2 electrode units. Cycling experiments showed specific discharge capacities as high as 980 mAhg–1 could be reached during the 1st cycle; the Coulombic efficiency was 89%. After the 1st cycle the capacity slightly increases reaching 1093 mAhg–1 (5th cycle, 98.9% Coulombic efficiency). They also tested the anode in a full cell configuration using Li(Ni Co Al )O (NCA) as cathode. The full cell can be charged and discharged in a stable way for more than 100 times with only a marginal capacity fade. The Coulombic efficiencies are as high as 99.7%. Using scanning electron microscopy (SEM) the team was able to characterize the changes in the anode structure during Li uptake. While the native anode shows an even geometry with the 17.5 μm gaps separating the towers, in charged state, expanded towers are almost in direct contact to each other. Discharging the anode does not re-establish the original tower-to-tower distances. A larger distance between the towers would cause mechanical instability because the expanded towers would not sustain each other. The whole system is able to reversibly endure lateral dilatations of up to 37% and perpendicular dilatations of up to 31%. The excellent cycling performance at high energy densities combined with, in respect of Si, only moderate dilatation and morphology changes emphasizes monocrystalline silicon as a highly practicable anode material. The patterned electrode, whose tower structure is scaled such that it optimally withstands volume expansion, is expected to perform even several hundreds of cycles in full cell configuration as preliminary tests have shown. Considering micro-applications, such as sensors, an extraordinary high cycle number is, however, not always required. As the energy density is rather high, in many cases the lifetime of the battery, if charged and discharged just a few times, would exceed that of the whole sensor. The Christian Doppler Laboratory for Lithium Batteries at the Institute for Chemistry and Technology of Materials at TU Graz was established in 2012 and is committed to developing new concepts for lithium batteries. In addition to Si micro batteries, solid-state Li batteries are also being investigated. The corporate partners of the CD Laboratory are AVL List GmbH and Infineon Technologies Austria AG.


Knall A.-C.,Institute for Chemistry and Technology of Materials | Kovacic S.,Institute for Chemistry and Technology of Materials | Hollauf M.,Institute for Chemistry and Technology of Materials | Reishofer D.,Institute for Chemistry and Technology of Materials | And 2 more authors.
Chemical Communications | Year: 2013

Inverse electron demand Diels-Alder reactions performed on the double bonds in open cellular macroporous poly(dicyclopentadiene) monoliths yield a high degree of functionalisation (up to 2 mmol pyridazines per g or 8 mmol N per g) with grafted di(pyridyl)pyridazines in a single step. © 2013 The Royal Society of Chemistry.

Loading Institute for Chemistry and Technology of Materials collaborators
Loading Institute for Chemistry and Technology of Materials collaborators