Time filter

Source Type

Rein I.D.,Group for Molecular Radiation Biology | Landsverk K.S.,Group for Molecular Radiation Biology | Micci F.,Institute for Medical Informatics | Micci F.,Institute for Cancer Genetics and Informatics | And 2 more authors.
Cell Cycle | Year: 2015

PARP inhibitors have been approved for treatment of tumors with mutations in or loss of BRCA1/2. The molecular mechanisms and particularly the cellular phenotypes resulting in synthetic lethality are not well understood and varying clinical responses have been observed. We have investigated the dose- and time-dependency of cell growth, cell death and cell cycle traverse of 4 malignant lymphocyte cell lines treated with the PARP inhibitor Olaparib. PARP inhibition induced a severe growth inhibition in this cell line panel and increased the levels of phosphorylated H2AX-associated DNA damage in S phase. Repair of the remaining replication related damage caused a G2 phase delay before entry into mitosis. The G2 delay, and the growth inhibition, was more pronounced in the absence of functional ATM. Further, Olaparib treated Reh and Granta-519 cells died by apoptosis, while U698 and JVM-2 cells proceeded through mitosis with aberrant chromosomes, skipped cytokinesis, and eventually died by necrosis. The TP53-deficient U698 cells went through several rounds of DNA replication and mitosis without cytokinesis, ending up as multinucleated cells with DNA contents of up to 16c before dying. In summary, we report here for the first time cell cycle-resolved DNA damage induction, and cell line-dependent differences in the mode of cell death caused by PARP inhibition. © Idun Dale Rein, Kirsti Solberg Landsverk, Francesca Micci, Sebastian Patzke, and Trond Stokke. Source

Panagopoulos I.,Institute for Cancer Genetics and Informatics | Panagopoulos I.,University of Oslo | Gorunova L.,Institute for Cancer Genetics and Informatics | Gorunova L.,University of Oslo | And 3 more authors.
PLoS ONE | Year: 2015

Retroperitoneal leiomyoma is a rare benign smooth muscle tumor almost exclusively found in women and with histopathological features similar to uterine leiomyomas. The pathogenesis of retroperitoneal leiomyoma is unclear and next to nothing is known about the cytogenetics and molecular genetics of the tumor. We present here a retroperitoneal leiomyoma with a t(9;22)(q33;q12) as the sole karyotypic aberration. The translocation resulted in an EWSR1-PBX3 fusion gene in which exon 9 of EWSR1 (nucleotide 1320 accession number NM-013986 version 3) was in-frame fused to exon 5 of PBX3 (nucleotide 824 accession number NM-006195 version 5). The EWSR1-PBX3 fusion transcript codes for a 529 amino acids long chimeric EWSR1-PBX3 protein which contains the N-terminal transactivation part of EWSR1 and the homeodomain of PBX3. The present study, together with our previous finding of a retroperitoneal leiomyoma with t(10;17)(q22;q21) as the sole karyotypic aberration and a KAT6B-KANSL1 fusion gene, indicates that retroperitoneal leiomyomas may be characterized by fusion genes coding for chimeric proteins. However, cytogenetic and molecular heterogeneity exists in these tumors and it is too early to tell how many and which different pathways lead to retroperitoneal leiomyomagenesis. © 2015 Panagopoulos et al. Source

Olsen T.K.,Institute for Cancer Genetics and Informatics | Olsen T.K.,University of Oslo | Panagopoulos I.,Institute for Cancer Genetics and Informatics | Panagopoulos I.,University of Oslo | And 16 more authors.
Neuro-Oncology | Year: 2015

Background We have previously characterized 19 ependymal tumors using Giemsa banding and high-resolution comparative genomic hybridization. The aim of this study was to analyze these tumors searching for fusion genes. Methods RNA sequencing was performed in 12 samples. Potential fusion transcripts were assessed by seed count and structural chromosomal aberrations. Transcripts of interest were validated using fluorescence in situ hybridization and PCR followed by direct sequencing. Results RNA sequencing identified rearrangements of the anaplastic lymphoma kinase gene (ALK) in 2 samples. Both tumors harbored structural aberrations involving the ALK locus 2p23. Tumor 1 had an unbalanced t(2;14)(p23;q22) translocation which led to the fusion gene KTN1-ALK. Tumor 2 had an interstitial del(2)(p16p23) deletion causing the fusion of CCDC88A and ALK. In both samples, the breakpoint of ALK was located between exons 19 and 20. Both patients were infants and both tumors were supratentorial. The tumors were well demarcated from surrounding tissue and had both ependymal and astrocytic features but were diagnosed and treated as ependymomas. Conclusions By combining karyotyping and RNA sequencing, we identified the 2 first ever reported ALK rearrangements in CNS tumors. Such rearrangements may represent the hallmark of a new entity of pediatric glioma characterized by both ependymal and astrocytic features. Our findings are of particular importance because crizotinib, a selective ALK inhibitor, has demonstrated effect in patients with lung cancer harboring ALK rearrangements. Thus, ALK emerges as an interesting therapeutic target in patients with ependymal tumors carrying ALK fusions. © 2015 The Author(s). Source

Discover hidden collaborations