Entity

Time filter

Source Type


Marco S.,Institute for Bioengineering of Catalonia | Marco S.,University of Barcelona
Analytical and Bioanalytical Chemistry | Year: 2014

Over the last two decades, electronic nose research has produced thousands of research works. Many of them were describing the ability of the e-nose technology to solve diverse applications in domains ranging from food technology to safety, security, or health. It is, in fact, in the biomedical field where e-nose technology is finding a research niche in the last years. Although few success stories exist, most described applications never found the road to industrial or clinical exploitation. Most described methodologies were not reliable and were plagued by numerous problems that prevented practical application beyond the lab. This work emphasizes the need of external validation in machine olfaction. I describe some statistical and methodological pitfalls of the e-nose practice and I give some best practice recommendations for researchers in the field. [Figure not available: see fulltext.] © 2014 Springer-Verlag Berlin Heidelberg. Source


Trepat X.,Institute for Bioengineering of Catalonia
Comprehensive Physiology | Year: 2012

Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis. © 2012 American Physiological Society Source


Brugues A.,Institute for Bioengineering of Catalonia
Nature Physics | Year: 2014

A fundamental feature of multicellular organisms is their ability to self-repair wounds through the movement of epithelial cells into the damaged area. This collective cellular movement is commonly attributed to a combination of cell crawling and 'purse-string' contraction of a supracellular actomyosin ring. Here we show by direct experimental measurement that these two mechanisms are insufficient to explain force patterns observed during wound closure. At early stages of the process, leading actin protrusions generate traction forces that point away from the wound, showing that wound closure is initially driven by cell crawling. At later stages, we observed unanticipated patterns of traction forces pointing towards the wound. Such patterns have strong force components that are both radial and tangential to the wound. We show that these force components arise from tensions transmitted by a heterogeneous actomyosin ring to the underlying substrate through focal adhesions. The structural and mechanical organization reported here provides cells with a mechanism to close the wound by cooperatively compressing the underlying substrate. Source


Conte V.,Institute for Bioengineering of Catalonia
PloS one | Year: 2012

The article provides a biomechanical analysis of ventral furrow formation in the Drosophila melanogaster embryo. Ventral furrow formation is the first large-scale morphogenetic movement in the fly embryo. It involves deformation of a uniform cellular monolayer formed following cellularisation, and has therefore long been used as a simple system in which to explore the role of mechanics in force generation. Here we use a quantitative framework to carry out a systematic perturbation analysis to determine the role of each of the active forces observed. The analysis confirms that ventral furrow invagination arises from a combination of apical constriction and apical-basal shortening forces in the mesoderm, together with a combination of ectodermal forces. We show that the mesodermal forces are crucial for invagination: the loss of apical constriction leads to a loss of the furrow, while the mesodermal radial shortening forces are the primary cause of the internalisation of the future mesoderm as the furrow rises. Ectodermal forces play a minor but significant role in furrow formation: without ectodermal forces the furrow is slower to form, does not close properly and has an aberrant morphology. Nevertheless, despite changes in the active mesodermal and ectodermal forces lead to changes in the timing and extent of furrow, invagination is eventually achieved in most cases, implying that the system is robust to perturbation and therefore over-determined. Source


Byrne D.P.,Trinity College Dublin | Lacroix D.,Institute for Bioengineering of Catalonia | Prendergast P.J.,Trinity College Dublin
Journal of Orthopaedic Research | Year: 2011

In this study, a three-dimensional (3D) computational simulation of bone regeneration was performed in a human tibia under realistic muscle loading. The simulation was achieved using a discrete lattice modeling approach combined with a mechanoregulation algorithm to describe the cellular processes involved in the healing process-namely proliferation, migration, apoptosis, and differentiation of cells. The main phases of fracture healing were predicted by the simulation, including the bone resorption phase, and there was a qualitative agreement between the temporal changes in interfragmentary strain and bending stiffness by comparison to experimental data and clinical results. Bone healing was simulated beyond the reparative phase by modeling the transition of woven bone into lamellar bone. Because the simulation has been shown to work with realistic anatomical 3D geometry and muscle loading, it demonstrates the potential of simulation tools for patient-specific pre-operative treatment planning. © 2011 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. Source

Discover hidden collaborations