Time filter

Source Type

Schroder D.,Institute For Biochemie Und Signaltransduktion | Todter K.,Institute For Biochemie Und Molekular Zellbiologie | Gonzalez B.,CSIC - Institute of Physical Chemistry "Rocasolano" | Franco-Echevarria E.,CSIC - Institute of Physical Chemistry "Rocasolano" | And 5 more authors.
Biochemical Pharmacology

As ectopic expression of the neuronal inositol-1,4,5-trisphosphate-3-kinase A (InsP3Kinase) in tumor cells increases the metastatic potential, InsP3Kinase is an interesting target for tumor therapy. Recently, we have identified a membrane-permeable InsP3Kinase inhibitor (BAMB-4) exhibiting an IC50-value of 20 μM. Here we characterized a new InsP3Kinase inhibitor which shows a 130-fold lower IC50 value (157 ± 57 nM) as compared to BAMB-4. We demonstrate that this nitrophenolic compound, BIP-4, is non-competitive to ATP but competitive to InsP3, thus exhibits a high selectivity for inhibition of InsP3Kinase activity. Docking analysis suggested a putative binding mode of this molecule into the InsP3Kinase active site. Determination of cellular uptake in lung cancer cells (H1299) revealed that 6% of extracellular BIP-4 is internalized by non-endosomal uptake, showing that BIP-4 is not trapped inside endo/lysosomes but is available to inhibit cellular InsP3Kinase activity. Interestingly, we found that BIP-4 mediated inhibition of InsP3Kinase activity in the two lung cancer cell lines H1299 and LN4323 inhibited proliferation and adhesion at IC50 values of 3 μM or 2 μM, respectively. InsP3Kinase inhibition did not alter ATP-induced calcium signals but significantly reduced the level of Ins(1,3,4,5,6)P5. From these data we conclude that the inhibitory effect of BIP-4 on proliferation and adhesion of lung cancer cells does not result from alterations of calcium but from alterations of inositol phosphate signals. In summary, we reveal that inhibition of cellular InsP3Kinase by BIP-4 impairs proliferation and adhesion and therefore BIP-4 might be a promising compound to reduce the metastatic potential of lung carcinoma cells. © 2015 Elsevier Inc. All rights reserved. Source

Schroder D.,Institute For Biochemie Und Signaltransduktion | Rehbach C.,Institute For Biochemie Und Signaltransduktion | Seyffarth C.,Screening Unit | Neuenschwander M.,Screening Unit | And 2 more authors.
Biochemical and Biophysical Research Communications

Ectopic expression of the neuron-specific inositol-1,4,5-trisphosphate-3-kinase A (ITPKA) in lung cancer cells increases their metastatic potential because the protein exhibits two actin regulating activities; it bundles actin filaments and regulates inositol-1,4,5-trisphosphate (InsP3)-mediated calcium signals by phosphorylating InsP3. Thus, in order to inhibit the metastasis-promoting activity of ITPKA, both its actin bundling and its InsP3kinase activity has to be blocked. In this study, we performed a high throughput screen in order to identify specific and membrane-permeable substances against the InsP3kinase activity. Among 341,44 small molecules, 237 compounds (0.7%) were identified as potential InsP3kinase inhibitors. After determination of IC50-values, the three compounds with highest specificity and highest hydrophobicity (EPPC-3, BAMB-4, MEPTT-3) were further characterized. Only BAMB-4 was nearly completely taken up by H1299 cells and remained stable after cellular uptake, thus exhibiting a robust stability and a high membrane permeability. Determination of the inhibitor type revealed that BAMB-4 belongs to the group of mixed type inhibitors. Taken together, for the first time we identified a highly membrane-permeable inhibitor against the InsP3kinase activity of ITPKA providing the possibility to partly inhibit the metastasis-promoting effect of ITPKA in lung tumor cells. © 2013 Elsevier Inc. Source

Discover hidden collaborations